Files
ragflow/CLAUDE.md
Marvion 395ce16b3c Fix: correct MCP server authentication header format in frontend (#9819)
- Fix MCP test connection authentication issues by updating frontend
request format
- Add variables field with authorization_token for template substitution
- Change headers to use proper Authorization Bearer format with template
variable

🤖 Generated with [Claude Code](https://claude.ai/code)

### What problem does this PR solve?

correct MCP server authentication header format in frontend
### Type of change

 * [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Marvion <marvionliu@wukongjx.cn>
Co-authored-by: Claude <noreply@anthropic.com>
2025-11-03 20:00:27 +08:00

3.5 KiB

CLAUDE.md

This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.

Project Overview

RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It's a full-stack application with:

  • Python backend (Flask-based API server)
  • React/TypeScript frontend (built with UmiJS)
  • Microservices architecture with Docker deployment
  • Multiple data stores (MySQL, Elasticsearch/Infinity, Redis, MinIO)

Architecture

Backend (/api/)

  • Main Server: api/ragflow_server.py - Flask application entry point
  • Apps: Modular Flask blueprints in api/apps/ for different functionalities:
    • kb_app.py - Knowledge base management
    • dialog_app.py - Chat/conversation handling
    • document_app.py - Document processing
    • canvas_app.py - Agent workflow canvas
    • file_app.py - File upload/management
  • Services: Business logic in api/db/services/
  • Models: Database models in api/db/db_models.py

Core Processing (/rag/)

  • Document Processing: deepdoc/ - PDF parsing, OCR, layout analysis
  • LLM Integration: rag/llm/ - Model abstractions for chat, embedding, reranking
  • RAG Pipeline: rag/flow/ - Chunking, parsing, tokenization
  • Graph RAG: graphrag/ - Knowledge graph construction and querying

Agent System (/agent/)

  • Components: Modular workflow components (LLM, retrieval, categorize, etc.)
  • Templates: Pre-built agent workflows in agent/templates/
  • Tools: External API integrations (Tavily, Wikipedia, SQL execution, etc.)

Frontend (/web/)

  • React/TypeScript with UmiJS framework
  • Ant Design + shadcn/ui components
  • State management with Zustand
  • Tailwind CSS for styling

Common Development Commands

Backend Development

# Install Python dependencies
uv sync --python 3.10 --all-extras
uv run download_deps.py
pre-commit install

# Start dependent services
docker compose -f docker/docker-compose-base.yml up -d

# Run backend (requires services to be running)
source .venv/bin/activate
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh

# Run tests
uv run pytest

# Linting
ruff check
ruff format

Frontend Development

cd web
npm install
npm run dev        # Development server
npm run build      # Production build
npm run lint       # ESLint
npm run test       # Jest tests

Docker Development

# Full stack with Docker
cd docker
docker compose -f docker-compose.yml up -d

# Check server status
docker logs -f ragflow-server

# Rebuild images
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .

Key Configuration Files

  • docker/.env - Environment variables for Docker deployment
  • docker/service_conf.yaml.template - Backend service configuration
  • pyproject.toml - Python dependencies and project configuration
  • web/package.json - Frontend dependencies and scripts

Testing

  • Python: pytest with markers (p1/p2/p3 priority levels)
  • Frontend: Jest with React Testing Library
  • API Tests: HTTP API and SDK tests in test/ and sdk/python/test/

Database Engines

RAGFlow supports switching between Elasticsearch (default) and Infinity:

  • Set DOC_ENGINE=infinity in docker/.env to use Infinity
  • Requires container restart: docker compose down -v && docker compose up -d

Development Environment Requirements

  • Python 3.10-3.12
  • Node.js >=18.20.4
  • Docker & Docker Compose
  • uv package manager
  • 16GB+ RAM, 50GB+ disk space