【feature】【dev】修改Qwen2模型配置及yaml,适配run_mindformer

This commit is contained in:
zxq
2025-07-11 17:54:31 +08:00
parent a03af14a96
commit dc386615df
6 changed files with 265 additions and 154 deletions

View File

@@ -0,0 +1,41 @@
seed: 0
output_dir: './output' # path to save checkpoint/strategy
load_checkpoint: ''
use_parallel: False
run_mode: 'predict'
use_legacy: False
load_ckpt_format: 'safetensors'
trainer:
type: CausalLanguageModelingTrainer
model_name: 'qwen2'
# default parallel of device num = 1 for Atlas 800T A2
parallel_config:
data_parallel: 1
model_parallel: 1
# HuggingFace file directory
pretrained_model_dir: '/path/hf_dir'
model:
model_config:
compute_dtype: "bfloat16"
layernorm_compute_dtype: "float32"
softmax_compute_dtype: "float32"
rotary_dtype: "bfloat16"
params_dtype: "bfloat16"
add_qkv_bias: True
# mindspore context init config
context:
mode: 0 #0--Graph Mode; 1--Pynative Mode
enable_graph_kernel: False
ascend_config:
precision_mode: "must_keep_origin_dtype"
max_device_memory: "59GB"
save_graphs: False
save_graphs_path: "./graph"
# parallel context config
parallel:
parallel_mode: "MANUAL_PARALLEL"
enable_alltoall: False

View File

@@ -52,6 +52,11 @@ from .llama import (
LlamaTokenizer,
LlamaTokenizerFast
)
from .qwen2 import (
Qwen2Config,
Qwen2PreTrainedModel,
Qwen2ForCausalLM,
)
from .qwen3 import (
Qwen3Config,
Qwen3PreTrainedModel,

View File

@@ -13,3 +13,9 @@
# limitations under the License.
# ============================================================================
"""qwen2 model"""
from .utils import Qwen2PreTrainedModel
from .configuration_qwen2 import Qwen2Config
from .modeling_qwen2 import Qwen2ForCausalLM
from .modeling_qwen2_infer import InferenceQwen2ForCausalLM
__all__ = ['Qwen2Config', 'Qwen2ForCausalLM', 'InferenceQwen2ForCausalLM', 'Qwen2PreTrainedModel']

View File

@@ -15,167 +15,205 @@
"""Qwen2 Config API."""
__all__ = ['Qwen2Config']
from typing import Optional, Union
from mindspore._checkparam import args_type_check
from mindformers.modules.transformer.transformer import default_transformer_config, \
TransformerOpParallelConfig
from mindformers.tools.register import MindFormerRegister, MindFormerModuleType
from mindformers.models.configuration_utils import PretrainedConfig
from mindformers.models.utils import convert_mstype
from mindformers.models.model_config_utils import (
register_mf_model_parameter,
ignore_and_delete_parameter,
NotSupportedInfo
)
from mindformers.parallel_core.mf_model_config import MFModelConfig
from mindformers.tools.register import MindFormerRegister, MindFormerModuleType
@MindFormerRegister.register(MindFormerModuleType.CONFIG)
@MindFormerRegister.register(MindFormerModuleType.CONFIG, legacy=False, search_names='qwen2')
class Qwen2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
""" Qwen2 Model Config """
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Qwen2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22016):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 28):
The number of layers using full attention. The first `max_window_layers`
layers will use full attention, while any
additional layer afterwards will use SWA (Sliding Window Attention).
layer_types (`list`, *optional*):
Attention pattern for each layer.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
"""
model_type = "Qwen2"
keys_to_ignore_at_inference = ["past_key_values"]
@args_type_check(parallel_config=(dict, TransformerOpParallelConfig))
# Default tensor parallel plan for base model `Qwen2`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
@register_mf_model_parameter(
mf_model_kwargs=MFModelConfig(
pad_token_id=151643,
block_size=32,
num_blocks=1024,
normalization='RMSNorm',
add_bias_linear=False,
gated_linear_unit=True
))
@ignore_and_delete_parameter(extra_ignore_param=[
('max_window_layers', NotSupportedInfo.useless),
('sliding_window', NotSupportedInfo.useless),
('layer_types', NotSupportedInfo.useless),
('use_sliding_window', NotSupportedInfo.useless),
])
def __init__(self,
vocab_size: int = 151936,
hidden_size: int = 4096,
intermediate_size: Optional[int] = 22016,
num_hidden_layers: int = 32,
num_attention_heads: int = 32,
num_key_value_heads: Optional[int] = 32,
hidden_act: str = "silu",
max_position_embeddings: Optional[int] = 32768,
rms_norm_eps: float = 1e-6,
tie_word_embeddings: bool = False,
rope_theta: float = 10000.0,
position_embedding_type: str = "rope",
seq_length: int = 2048,
bos_token_id: int = 1,
eos_token_id: int = 2,
pad_token_id: int = 0,
normalization: str = "RMSNorm",
compute_dtype: str = "bfloat16",
layernorm_compute_dtype: str = "float32",
softmax_compute_dtype: str = "float32",
rotary_dtype: str = "float32",
params_dtype: str = "bfloat16",
residual_dtype: str = None,
add_qkv_bias: bool = False,
add_bias_linear: bool = False,
gated_linear_unit: bool = True,
parallel_config: Union[dict, TransformerOpParallelConfig] = default_transformer_config,
use_flash_attention: bool = True,
repetition_penalty: float = 1.0,
max_decode_length: int = 1024,
block_size: int = 16,
num_blocks: int = 512,
top_k: int = 5,
top_p: float = 1.0,
do_sample: bool = True,
parallel_decoding_params: dict = None,
vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
layer_types=None,
attention_dropout=0.0,
**kwargs):
"""
Qwen2 config class which defines the model size.
Args:
vocab_size (int): Vocabulary size of the qwen2 model. Default: ``151936``.
hidden_size (int): Dimensionality of the encoder layers and the pooler layer. Default: ``4096``.
intermediate_size (int): Customize the number of dimension of the intermediate layer.
Default: ``22016``.
num_hidden_layers (int): Number of hidden layers in the Transformer decoder. Default: ``32``.
num_attention_heads (int): Number of attention heads for each attention layer in the Transformer decoder.
Default: ``32``.
num_key_value_heads (int): Define multi group head attention heads number. Default: ``32``.
hidden_act (str): Specifies the activation function for hidden layers. Default: ``silu``.
max_position_embedding (int): Customize the maximum sequence length that the model can handle.
Default: "32768".
rms_norm_eps (float): The epsilon value of the denominator. Default: ``1e-6``.
tie_word_embeddings (bool): Whether to tie input and output embeddings. Default: ``False``.
rope_theta (float): Frequency factors for sine and cosine functions in RoPE. Default: ``10000.0``.
batch_size (int): Batch size for input data, use in predict. Default: ``1``.
seq_length (int): The sequence length of input_ids. Default: ``2048``.
multiple_of (int): Define SwiGLU hidden layer size multiples. Default: ``256``.
ffn_dim_multiplier (int): Define ffn layer dim multiples. Default: ``None``.
bos_token_id (int): The id of the *beginning-of-sequence* token. Default: ``1``.
eos_token_id (int): The id of the *end-of-sequence* token. Default: ``2``.
pad_token_id (int): The id of the *padding* token. Default: ``0``.
normalization (str): Defines the normalization layer type. Default: ``RMSNorm``.
compute_dtype (str): Linear layer compute dtype. Default: ``bfloat16``.
layernorm_compute_type (str): Layernorm compute dtype. Default: ``float32``.
softmax_compute_type (str): Softmax compute dtype. Default: ``float32``.
rotary_dtype (str): RoPE compute dtype. Default: ``float32``.
params_dtype (str): Parameter initial dtype. Default: ``bfloat16``.
residual_dtype (str): Residual compute dtype. Default: ``None``.
embedding_init_type (str): Embedding weight initial dtype. Default: ``None``.
qkv_has_bias (bool): Whether the Query, Key, and Value projection has bias. Default: ``False``.
attn_proj_has_bias (bool): Whether the attn projection has bias. Default: ``False``.
out_proj_has_bias (bool): Whether the wo projection has bias. Default: ``False``.
add_bias_linear (bool): Whether the attn mlp has bias. Default: ``False``.
parallel_config (Union[dict, TransformerOpParallelConfig]): The parallel configuration.
moe_config (Union[dict, MoEConfig]): The MoE configuration. Default: ``default_moe_config`` ,
an instance of `MoEConfig` with default args.
scaling_factor (float): Scaling factor to adjust the weights of the frequency factors in the sine
and cosine functions. Default: ``1.0``.
use_flash_attention (bool): Whether to enable flash attention ops. Default: ``False``.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`_ for more details. Default: ``1.0``.
max_decode_length (int): The maximum length the generated tokens can have.
block_size (int): The maximum number of tokens in one block can have when using paged attention.
Default: ``16``.
num_blocks (int): The maximum number of blocks when using paged attention. Default: ``512``.
top_k (int): The number of highest probability vocabulary tokens to keep for top-k-filtering.
Default: ``5``.
top_p (float): If set to float < 1, only the smallest set of most probable tokens with probabilities
that add up to `top_p` or higher are kept for generation. Default: ``1.0``.
do_sample (bool): Whether to use sampling; use greedy decoding otherwise. Default: ``True``.
quant_config (dict): Quantitative configuration. Default: ``None``.
parallel_decoding_params (dict): Parallel decoding params. Default: ``None``.
kwargs: Other arguments.
"""
super(Qwen2Config, self).__init__(**kwargs)
# hf params
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings if max_position_embeddings else seq_length
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if self.use_sliding_window else None
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.position_embedding_type = position_embedding_type
self.tie_word_embeddings = tie_word_embeddings
# common params
if isinstance(parallel_config, dict):
parallel_config = TransformerOpParallelConfig(**parallel_config)
self.seq_length = seq_length
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.normalization = normalization
self.compute_dtype = convert_mstype(compute_dtype)
self.layernorm_compute_dtype = convert_mstype(layernorm_compute_dtype)
self.softmax_compute_dtype = convert_mstype(softmax_compute_dtype)
self.rotary_dtype = convert_mstype(rotary_dtype)
self.params_dtype = convert_mstype(params_dtype)
if residual_dtype is not None:
self.residual_dtype = convert_mstype(residual_dtype)
else:
self.residual_dtype = self.compute_dtype
self.add_qkv_bias = add_qkv_bias
self.add_bias_linear = add_bias_linear
self.gated_linear_unit = gated_linear_unit
self.use_flash_attention = use_flash_attention
# infer params
self.repetition_penalty = repetition_penalty
self.max_decode_length = max_decode_length
self.top_k = top_k
self.top_p = top_p
self.do_sample = do_sample
self.block_size = block_size
self.num_blocks = num_blocks
self.parallel_decoding_params = parallel_decoding_params
self.parallel_config = parallel_config
self.post_process = True
self.rope_scaling = rope_scaling
self.attention_dropout = attention_dropout
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
self.layer_types = layer_types
if self.layer_types is None:
self.layer_types = [
"sliding_attention"
if self.sliding_window is not None and i >= self.max_window_layers
else "full_attention"
for i in range(self.num_hidden_layers)
]
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@@ -24,7 +24,7 @@ from mindformers.models.qwen2.utils import Qwen2PreTrainedModel
from mindformers.models.qwen2.modeling_qwen2_infer import InferenceQwen2ForCausalLM
@MindFormerRegister.register(MindFormerModuleType.MODELS)
@MindFormerRegister.register(MindFormerModuleType.MODELS, legacy=False)
class Qwen2ForCausalLM(Qwen2PreTrainedModel):
r"""
Provide Qwen2 Model for training and inference.

View File

@@ -3002,8 +3002,29 @@
"mindformers.models.multi_modal.ModalContentTransformTemplate.post_process": {
"signature": "(self, output_ids, **kwargs)"
},
"mindformers.models.qwen2.InferenceQwen2ForCausalLM": {
"signature": "(config)"
},
"mindformers.models.qwen2.InferenceQwen2ForCausalLM.construct": {
"signature": "(self, input_ids, positions=None, batch_valid_length=None, context_lens_tensor=None, q_seq_lens=None, block_tables=None, slot_mapping=None, attention_mask=None, attn_metadata=None, key_cache=None, value_cache=None)"
},
"mindformers.models.qwen2.Qwen2Config": {
"signature": "(vocab_size=151936, hidden_size=4096, intermediate_size=22016, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_act='silu', max_position_embeddings=32768, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, use_sliding_window=False, sliding_window=4096, max_window_layers=28, layer_types=None, attention_dropout=0.0, **kwargs)"
},
"mindformers.models.qwen2.Qwen2ForCausalLM": {
"signature": "(config)"
},
"mindformers.models.qwen2.Qwen2PreTrainedModel": {
"signature": "(config: mindformers.models.configuration_utils.PretrainedConfig, *inputs, **kwargs)"
},
"mindformers.models.qwen2.Qwen2PreTrainedModel.config_class": {
"signature": "(vocab_size=151936, hidden_size=4096, intermediate_size=22016, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_act='silu', max_position_embeddings=32768, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, use_sliding_window=False, sliding_window=4096, max_window_layers=28, layer_types=None, attention_dropout=0.0, **kwargs)"
},
"mindformers.models.qwen2.Qwen2PreTrainedModel.convert_name": {
"signature": "(self, weight_name)"
},
"mindformers.models.qwen2.configuration_qwen2.Qwen2Config": {
"signature": "(vocab_size: int = 151936, hidden_size: int = 4096, intermediate_size: Optional[int] = 22016, num_hidden_layers: int = 32, num_attention_heads: int = 32, num_key_value_heads: Optional[int] = 32, hidden_act: str = 'silu', max_position_embeddings: Optional[int] = 32768, rms_norm_eps: float = 1e-06, tie_word_embeddings: bool = False, rope_theta: float = 10000.0, position_embedding_type: str = 'rope', seq_length: int = 2048, bos_token_id: int = 1, eos_token_id: int = 2, pad_token_id: int = 0, normalization: str = 'RMSNorm', compute_dtype: str = 'bfloat16', layernorm_compute_dtype: str = 'float32', softmax_compute_dtype: str = 'float32', rotary_dtype: str = 'float32', params_dtype: str = 'bfloat16', residual_dtype: str = None, add_qkv_bias: bool = False, add_bias_linear: bool = False, gated_linear_unit: bool = True, parallel_config: Union[dict, mindformers.modules.transformer.transformer.TransformerOpParallelConfig] = <mindformers.modules.transformer.transformer.TransformerOpParallelConfig object>, use_flash_attention: bool = True, repetition_penalty: float = 1.0, max_decode_length: int = 1024, block_size: int = 16, num_blocks: int = 512, top_k: int = 5, top_p: float = 1.0, do_sample: bool = True, parallel_decoding_params: dict = None, **kwargs)"
"signature": "(vocab_size=151936, hidden_size=4096, intermediate_size=22016, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_act='silu', max_position_embeddings=32768, initializer_range=0.02, rms_norm_eps=1e-06, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, use_sliding_window=False, sliding_window=4096, max_window_layers=28, layer_types=None, attention_dropout=0.0, **kwargs)"
},
"mindformers.models.qwen2.modeling_qwen2.Qwen2ForCausalLM": {
"signature": "(config)"
@@ -4167,7 +4188,7 @@
"signature": "(input_size: int, output_size: int, config: mindformers.parallel_core.model_parallel_config.ModelParallelConfig, init_method: Callable = None, bias: bool = False, gather_output: bool = False, stride: int = 1, keep_master_weight_for_test: bool = False, skip_bias_add: bool = False, skip_weight_param_allocation: bool = False, embedding_activation_buffer: Optional[List[mindspore.common.tensor.Tensor]] = None, grad_output_buffer: Optional[List[mindspore.common.tensor.Tensor]] = None, is_expert: bool = True, tp_comm_buffer_name: str = None, disable_grad_reduce: bool = False, transpose_b: bool = True, bias_init: Callable = None)"
},
"mindformers.parallel_core.training_graph.tensor_parallel.batched_layers.ColumnParallelBatchedLinear.construct": {
"signature": "(self, input_: mindspore.common.tensor.Tensor, weight: mindspore.common.tensor.Tensor = None) -> tuple[mindspore.common.tensor.Tensor, mindspore.common.tensor.Tensor]"
"signature": "(self, input_: mindspore.common.tensor.Tensor, weight: mindspore.common.tensor.Tensor = None) -> tuple"
},
"mindformers.parallel_core.training_graph.tensor_parallel.batched_layers.ColumnParallelBatchedLinear.shard": {
"signature": "(self, config: mindformers.parallel_core.model_parallel_config.ModelParallelConfig) -> None"
@@ -4179,7 +4200,7 @@
"signature": "(input_size: int, output_size: int, config: mindformers.parallel_core.model_parallel_config.ModelParallelConfig, init_method: Callable = None, bias: bool = False, input_is_parallel: bool = False, skip_bias_add: bool = False, stride: int = 1, keep_master_weight_for_test: bool = False, is_expert: bool = True, tp_comm_buffer_name: str = None, transpose_b: bool = True, bias_init: Callable = None)"
},
"mindformers.parallel_core.training_graph.tensor_parallel.batched_layers.RowParallelBatchedLinear.construct": {
"signature": "(self, input_: mindspore.common.tensor.Tensor) -> tuple[mindspore.common.tensor.Tensor, mindspore.common.tensor.Tensor]"
"signature": "(self, input_: mindspore.common.tensor.Tensor) -> tuple"
},
"mindformers.parallel_core.training_graph.tensor_parallel.batched_layers.RowParallelBatchedLinear.shard": {
"signature": "(self, config: mindformers.parallel_core.model_parallel_config.ModelParallelConfig) -> None"
@@ -4191,7 +4212,7 @@
"signature": "(input_size: int, output_size: int, config: mindformers.parallel_core.transformer_config.TransformerConfig, init_method: Callable = None, bias: bool = True, gather_output: bool = False, stride: int = 1, keep_master_weight_for_test: bool = False, skip_bias_add: bool = False, skip_weight_param_allocation: bool = False, embedding_activation_buffer: Optional[List[mindspore.common.tensor.Tensor]] = None, grad_output_buffer: Optional[List[mindspore.common.tensor.Tensor]] = None, is_expert: bool = False, tp_comm_buffer_name: str = None, disable_grad_reduce: bool = False, transpose_b: bool = True, bias_init: Callable = None)"
},
"mindformers.parallel_core.training_graph.tensor_parallel.layers.ColumnParallelLinear.construct": {
"signature": "(self, input_: mindspore.common.tensor.Tensor, weight: mindspore.common.tensor.Tensor = None) -> tuple[mindspore.common.tensor.Tensor, mindspore.common.tensor.Tensor]"
"signature": "(self, input_: mindspore.common.tensor.Tensor, weight: mindspore.common.tensor.Tensor = None) -> tuple"
},
"mindformers.parallel_core.training_graph.tensor_parallel.layers.ColumnParallelLinear.shard": {
"signature": "(self, config: mindformers.parallel_core.transformer_config.TransformerConfig) -> None"
@@ -4206,7 +4227,7 @@
"signature": "(input_size: int, output_size: int, config: mindformers.parallel_core.transformer_config.TransformerConfig, init_method: Callable = None, bias: bool = True, input_is_parallel: bool = False, skip_bias_add: bool = False, stride: int = 1, keep_master_weight_for_test: bool = False, is_expert: bool = False, tp_comm_buffer_name: str = None, transpose_b: bool = True, bias_init: Callable = None)"
},
"mindformers.parallel_core.training_graph.tensor_parallel.layers.RowParallelLinear.construct": {
"signature": "(self, input_: mindspore.common.tensor.Tensor) -> tuple[mindspore.common.tensor.Tensor, mindspore.common.tensor.Tensor]"
"signature": "(self, input_: mindspore.common.tensor.Tensor) -> tuple"
},
"mindformers.parallel_core.training_graph.tensor_parallel.layers.RowParallelLinear.shard": {
"signature": "(self, config: mindformers.parallel_core.transformer_config.TransformerConfig) -> None"
@@ -4230,7 +4251,7 @@
"signature": "(input_size: int, output_size: int, config: mindformers.parallel_core.transformer_config.TransformerConfig, init_method: Callable = None, bias: bool = True, gather_output: bool = False, stride: int = 1, keep_master_weight_for_test: bool = False, skip_bias_add: bool = False, skip_weight_param_allocation: bool = False, embedding_activation_buffer: Optional[List[mindspore.common.tensor.Tensor]] = None, grad_output_buffer: Optional[List[mindspore.common.tensor.Tensor]] = None, is_expert: bool = False, tp_comm_buffer_name: str = None, disable_grad_reduce: bool = False, transpose_b: bool = True, bias_init: Callable = None, lora_rank: int = 8, lora_alpha: int = 32, lora_dropout: float = 0.0, lora_a_init='normal', lora_b_init='zeros')"
},
"mindformers.parallel_core.training_graph.tensor_parallel.lora_layers.ColumnParallelLinearWithLoRA.construct": {
"signature": "(self, input_: mindspore.common.tensor.Tensor, weight: mindspore.common.tensor.Tensor = None) -> tuple[mindspore.common.tensor.Tensor, mindspore.common.tensor.Tensor]"
"signature": "(self, input_: mindspore.common.tensor.Tensor, weight: mindspore.common.tensor.Tensor = None) -> tuple"
},
"mindformers.parallel_core.training_graph.tensor_parallel.lora_layers.ColumnParallelLinearWithLoRA.shard_lora": {
"signature": "(self, config: mindformers.parallel_core.transformer_config.TransformerConfig) -> None"
@@ -4239,7 +4260,7 @@
"signature": "(input_size: int, output_size: int, config: mindformers.parallel_core.transformer_config.TransformerConfig, init_method: Callable = None, bias: bool = True, input_is_parallel: bool = False, skip_bias_add: bool = False, stride: int = 1, keep_master_weight_for_test: bool = False, is_expert: bool = False, tp_comm_buffer_name: str = None, transpose_b: bool = True, bias_init: Callable = None, lora_rank: int = 8, lora_alpha: int = 32, lora_dropout: float = 0.0, lora_a_init='normal', lora_b_init='zeros')"
},
"mindformers.parallel_core.training_graph.tensor_parallel.lora_layers.RowParallelLinearWithLoRA.construct": {
"signature": "(self, input_: mindspore.common.tensor.Tensor) -> tuple[mindspore.common.tensor.Tensor, mindspore.common.tensor.Tensor]"
"signature": "(self, input_: mindspore.common.tensor.Tensor) -> tuple"
},
"mindformers.parallel_core.training_graph.tensor_parallel.lora_layers.RowParallelLinearWithLoRA.shard_lora": {
"signature": "(self, config: mindformers.parallel_core.transformer_config.TransformerConfig) -> None"
@@ -4287,7 +4308,7 @@
"signature": "(config: mindformers.parallel_core.transformer_config.TransformerConfig, submodules: mindformers.parallel_core.training_graph.transformer.mlp.MLPSubmodules, is_expert: bool = False, input_size: int = None)"
},
"mindformers.parallel_core.training_graph.transformer.mlp.MLP.construct": {
"signature": "(self, hidden_states: mindspore.common.tensor.Tensor, per_token_scale=None, extra_loss=0.0) -> tuple[mindspore.common.tensor.Tensor, mindspore.common.tensor.Tensor, float]"
"signature": "(self, hidden_states: mindspore.common.tensor.Tensor, per_token_scale=None, extra_loss=0.0) -> tuple"
},
"mindformers.parallel_core.training_graph.transformer.mlp.MLP.shard": {
"signature": "(self, config: mindformers.parallel_core.transformer_config.TransformerConfig)"
@@ -4302,7 +4323,7 @@
"signature": "(config: mindformers.parallel_core.transformer_config.TransformerConfig, submodules: mindformers.parallel_core.training_graph.transformer.mlp.MLPSubmodules)"
},
"mindformers.parallel_core.training_graph.transformer.moe.shared_experts.SharedExpertMLP.construct": {
"signature": "(self, hidden_states: mindspore.common.tensor.Tensor) -> tuple[mindspore.common.tensor.Tensor, mindspore.common.tensor.Tensor]"
"signature": "(self, hidden_states: mindspore.common.tensor.Tensor) -> tuple"
},
"mindformers.parallel_core.training_graph.transformer.moe.shared_experts.SharedExpertMLP.expert_gate_shard": {
"signature": "(self, config: mindformers.parallel_core.transformer_config.TransformerConfig)"