Compare commits

...

82 Commits

Author SHA1 Message Date
jyong
7a50d7ff75 fix error weaviate vector 2023-08-30 20:31:56 +08:00
Joel
e34dcc0406 feat: code support copy (#1057) 2023-08-30 18:08:47 +08:00
Joel
a834ba8759 feat: support rename conversation (#1056) 2023-08-30 17:32:32 +08:00
KVOJJJin
c67f345d0e Fix: disable operations of dataset when embedding unavailable (#1055)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-30 17:27:19 +08:00
yezhwi
8b8e510bfe fix: handle AttributeError for datasets and index (#1052) 2023-08-30 11:14:16 +08:00
crazywoola
3db839a5cb 773 change embed title welcome to use (#1053) 2023-08-30 11:03:25 +08:00
takatost
417c19577a feat: add LocalAI local embedding model support (#1021)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-08-29 22:22:02 +08:00
Jyong
b5953039de recreate qdrant vector (#1049)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-29 15:00:36 +08:00
Jyong
a43e80dd9c add qdrant migration (#1046)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-29 10:37:04 +08:00
WangBooth
ad5f27bc5f fix openpyxl dimensions error (#1041) 2023-08-29 10:36:48 +08:00
Joel
05e0985f29 chore: match new dataset tool format (#1044) 2023-08-29 09:07:45 +08:00
takatost
7b3314c5db fix: dataset desc (#1045) 2023-08-29 09:07:27 +08:00
Jyong
a55ba6e614 Fix/ignore economy dataset (#1043)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-29 03:37:45 +08:00
bowen
f9bec1edf8 chore: perfect type definition (#1003) 2023-08-28 19:48:53 +08:00
Jyong
16199e968e fix notion import limit check (#1042)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-28 16:49:03 +08:00
takatost
02452421d5 fix: pub generate message text return null (#1037) 2023-08-28 16:43:54 +08:00
zxhlyh
3a5c7c75ad Fix/model selector (#1032) 2023-08-28 10:54:41 +08:00
zxhlyh
a7415ecfd8 Fix/upload document limit (#1033) 2023-08-28 10:53:45 +08:00
KVOJJJin
934def5fcc Fix: eslint (#1030) 2023-08-27 17:06:16 +08:00
takatost
0796791de5 feat: hf inference endpoint stream support (#1028) 2023-08-26 19:48:34 +08:00
takatost
6c148b223d fix: dataset query truncated (#1026) 2023-08-26 17:35:17 +08:00
zxhlyh
4b168f4838 fix: maintenance notice (#1025) 2023-08-26 16:09:55 +08:00
takatost
1c114eaef3 feat: update contributing (#1020) 2023-08-25 21:19:13 +08:00
Jyong
e053215155 fix document estimate parameter (#1019)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 20:10:08 +08:00
zxhlyh
13482b0fc1 feat: maintenance notice (#1016) 2023-08-25 19:38:52 +08:00
Jyong
38fa152cc4 fix update document index technique (#1018)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 18:29:55 +08:00
Uranus
2d9616c29c fix: xinference last token being ignored (#1013) 2023-08-25 18:15:05 +08:00
Jyong
915e26527b update dataset index struct (#1012)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 15:52:33 +08:00
Jyong
2d604d9330 Fix/filter empty segment (#1004)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 15:50:29 +08:00
Jyong
e7199826cc embedding model available check (#1009)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-25 00:25:16 +08:00
crazywoola
70e24b7594 fix: loading and calc rem (#1006) 2023-08-24 23:24:33 +08:00
yezhwi
c1602aafc7 refactor:cache in place & function name (#1001) 2023-08-24 22:54:21 +08:00
crazywoola
a3fec11438 fix: styles (#1005) 2023-08-24 22:37:46 +08:00
Jyong
b1fd1b3ab3 Feat/vector db manage (#997)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-24 21:27:31 +08:00
Jyong
5397799aac document limit (#999)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-24 21:27:13 +08:00
takatost
8e837dde1a feat: bump version to 0.3.18 (#1000) 2023-08-24 18:13:18 +08:00
takatost
9ae91a2ec3 feat: optimize xinference request max token key and stop reason (#998) 2023-08-24 18:11:15 +08:00
Matri
276d3d10a0 fix: apps loading issue (#994) 2023-08-24 17:57:38 +08:00
crazywoola
f13623184a fix style in app share (#995) 2023-08-24 17:57:25 +08:00
takatost
ef61e1487f fix: safetensor arm complie error (#996) 2023-08-24 17:38:10 +08:00
takatost
701e2b334f feat: remove unnecessary prompt of baichuan (#993) 2023-08-24 15:30:59 +08:00
takatost
6ebd6e7890 feat: bump version to 0.3.17 (#992) 2023-08-24 15:12:47 +08:00
takatost
bd3a9b2f8d fix: xinference-chat-stream-response (#991) 2023-08-24 14:39:34 +08:00
takatost
18d3877151 feat: optimize xinference stream (#989) 2023-08-24 13:58:34 +08:00
takatost
53e83d8697 feat: optimize baichuan prompt (#988) 2023-08-24 12:07:10 +08:00
Matri
6377fc75c6 chore: update lintrc config (#986) 2023-08-24 11:46:59 +08:00
takatost
2c30d19cbe feat: add baichuan prompt (#985) 2023-08-24 10:22:36 +08:00
takatost
9b247fccd4 feat: adjust hf max tokens (#979) 2023-08-23 22:24:50 +08:00
John Wang
3d38aa7138 feat: bump version to 0.3.16 2023-08-23 20:16:54 +08:00
takatost
7d2552b3f2 feat: upgrade xinference to 0.2.1 which support stream response (#977) 2023-08-23 20:15:45 +08:00
yezhwi
117a209ad4 Fix:condition for dataset availability check (#973) 2023-08-23 19:57:27 +08:00
takatost
071e7800a0 fix: add hf task field (#976)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-08-23 19:48:31 +08:00
takatost
a76fde3d23 feat: optimize hf inference endpoint (#975) 2023-08-23 19:47:50 +08:00
Jyong
1fc57d7358 normalize embedding (#974)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-23 19:10:11 +08:00
Matri
916d8be0ae fix: activation page reload issue after activating (#964) 2023-08-23 13:54:40 +08:00
crazywoola
a38412de7b update doc (#965) 2023-08-23 12:29:52 +08:00
Matri
9c9f0ddb93 fix: user activation request 404 issue (#963) 2023-08-23 08:57:25 +08:00
takatost
f8fbe96da4 feat: bump version to 0.3.15 (#959) 2023-08-22 18:20:33 +08:00
zxhlyh
215a27fd95 Feat/add xinference openllm provider (#958) 2023-08-22 18:19:10 +08:00
takatost
5cba2e7087 fix: web reader tool retrieve content empty (#957) 2023-08-22 18:01:16 +08:00
Jyong
5623839c71 update document segment (#950)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-22 17:59:24 +08:00
takatost
78d3aa5fcd fix: embedding init err (#956) 2023-08-22 17:43:59 +08:00
zxhlyh
a7c78d2cd2 fix: spark provider field name (#955) 2023-08-22 17:28:18 +08:00
Joel
4db35fa375 chore: obsolete info api use new api (#954) 2023-08-22 16:59:57 +08:00
Joel
e67a1413b6 chore: create btn to first place (#953) 2023-08-22 16:20:56 +08:00
takatost
4f3053a8cc fix: xinference chat completion error (#952) 2023-08-22 15:58:04 +08:00
zxhlyh
b3c2bf125f Feat/model providers (#951) 2023-08-22 15:38:12 +08:00
zxhlyh
9d5299e9ec fix: segment error tip & save segment disable when loading (#949) 2023-08-22 15:22:16 +08:00
Jyong
aee15adf1b update document segment (#948)
Co-authored-by: jyong <jyong@dify.ai>
2023-08-22 15:19:09 +08:00
zxhlyh
b185a70c21 Fix/speech to text button (#947) 2023-08-22 14:55:20 +08:00
takatost
a3aba7a9aa fix: provider model not delete when reset key pair (#946) 2023-08-22 13:48:58 +08:00
takatost
866ee5da91 fix: openllm generate cutoff (#945) 2023-08-22 13:43:36 +08:00
Matri
e8039a7da8 fix: add flex-wrap to categories container (#944) 2023-08-22 13:39:52 +08:00
bowen
5e0540077a chore: perfect type definition (#940) 2023-08-22 10:58:06 +08:00
Matri
b346bd9b83 fix: default language improvement in activation page (#942) 2023-08-22 09:28:37 +08:00
Matri
062e2e915b fix: login improvement (#941) 2023-08-21 21:26:32 +08:00
takatost
e0a48c4972 fix: xinference chat support (#939) 2023-08-21 20:44:29 +08:00
zxhlyh
f53242c081 Feat/add document status tooltip (#937) 2023-08-21 18:07:51 +08:00
Jyong
4b53bb1a32 Feat/token support (#909)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
Co-authored-by: jyong <jyong@dify.ai>
2023-08-21 13:57:18 +08:00
takatost
4c49ecedb5 feat: optimize web reader summary in 3.5 (#933) 2023-08-21 11:58:01 +08:00
takatost
4ff1870a4b fix: web reader tool missing nodejs (#932) 2023-08-21 11:26:11 +08:00
takatost
6c832ee328 fix: remove openllm pypi package because of this package too large (#931) 2023-08-21 02:12:28 +08:00
345 changed files with 7364 additions and 1527 deletions

View File

@@ -53,9 +53,9 @@ Did you have an issue, like a merge conflict, or don't know how to open a pull r
## Community channels
Stuck somewhere? Have any questions? Join the [Discord Community Server](https://discord.gg/AhzKf7dNgk). We are here to help!
Stuck somewhere? Have any questions? Join the [Discord Community Server](https://discord.gg/j3XRWSPBf7). We are here to help!
### i18n (Internationalization) Support
We are looking for contributors to help with translations in other languages. If you are interested in helping, please join the [Discord Community Server](https://discord.gg/AhzKf7dNgk) and let us know.
Also check out the [Frontend i18n README]((web/i18n/README_EN.md)) for more information.
Also check out the [Frontend i18n README]((web/i18n/README_EN.md)) for more information.

View File

@@ -16,15 +16,15 @@
## 本地开发
要设置一个可工作的开发环境,只需 fork 项目的 git 存储库,并使用适当的软件包管理器安装后端和前端依赖项,然后创建并运行 docker-compose 堆栈
要设置一个可工作的开发环境,只需 fork 项目的 git 存储库,并使用适当的软件包管理器安装后端和前端依赖项,然后创建并运行 docker-compose。
### Fork存储库
您需要 fork [存储](https://github.com/langgenius/dify)。
您需要 fork [Git 仓](https://github.com/langgenius/dify)。
### 克隆存储库
克隆您在 GitHub 上 fork 的存储库:
克隆您在 GitHub 上 fork 的库:
```
git clone git@github.com:<github_username>/dify.git

View File

@@ -52,4 +52,4 @@ git clone git@github.com:<github_username>/dify.git
## コミュニティチャンネル
お困りですか?何か質問がありますか? [Discord Community サーバ](https://discord.gg/AhzKf7dNgk)に参加してください。私たちがお手伝いします!
お困りですか?何か質問がありますか? [Discord Community サーバ](https://discord.gg/j3XRWSPBf7) に参加してください。私たちがお手伝いします!

View File

@@ -16,7 +16,7 @@ EXPOSE 5001
WORKDIR /app/api
RUN apt-get update && \
apt-get install -y bash curl wget vim gcc g++ python3-dev libc-dev libffi-dev
apt-get install -y bash curl wget vim gcc g++ python3-dev libc-dev libffi-dev nodejs
COPY requirements.txt /app/api/requirements.txt

View File

@@ -1,4 +1,5 @@
import datetime
import json
import math
import random
import string
@@ -6,10 +7,16 @@ import time
import click
from flask import current_app
from langchain.embeddings import OpenAIEmbeddings
from werkzeug.exceptions import NotFound
from core.embedding.cached_embedding import CacheEmbedding
from core.index.index import IndexBuilder
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
from core.model_providers.models.entity.model_params import ModelType
from core.model_providers.providers.hosted import hosted_model_providers
from core.model_providers.providers.openai_provider import OpenAIProvider
from libs.password import password_pattern, valid_password, hash_password
from libs.helper import email as email_validate
from extensions.ext_database import db
@@ -20,7 +27,7 @@ from models.model import Account
import secrets
import base64
from models.provider import Provider, ProviderType, ProviderQuotaType
from models.provider import Provider, ProviderType, ProviderQuotaType, ProviderModel
@click.command('reset-password', help='Reset the account password.')
@@ -102,6 +109,7 @@ def reset_encrypt_key_pair():
tenant.encrypt_public_key = generate_key_pair(tenant.id)
db.session.query(Provider).filter(Provider.provider_type == 'custom').delete()
db.session.query(ProviderModel).delete()
db.session.commit()
click.echo(click.style('Congratulations! '
@@ -295,6 +303,142 @@ def sync_anthropic_hosted_providers():
click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))
@click.command('create-qdrant-indexes', help='Create qdrant indexes.')
def create_qdrant_indexes():
click.echo(click.style('Start create qdrant indexes.', fg='green'))
create_count = 0
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for dataset in datasets:
if dataset.index_struct_dict:
if dataset.index_struct_dict['type'] != 'qdrant':
try:
click.echo('Create dataset qdrant index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except Exception:
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id
)
dataset.embedding_model = embedding_model.name
dataset.embedding_model_provider = embedding_model.model_provider.provider_name
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.SYSTEM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002", model_provider=model_provider)
embeddings = CacheEmbedding(embedding_model)
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if index:
index.create_qdrant_dataset(dataset)
index_struct = {
"type": 'qdrant',
"vector_store": {"class_prefix": dataset.index_struct_dict['vector_store']['class_prefix']}
}
dataset.index_struct = json.dumps(index_struct)
db.session.commit()
create_count += 1
else:
click.echo('passed.')
except Exception as e:
click.echo(
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
continue
click.echo(click.style('Congratulations! Create {} dataset indexes.'.format(create_count), fg='green'))
@click.command('update-qdrant-indexes', help='Update qdrant indexes.')
def update_qdrant_indexes():
click.echo(click.style('Start Update qdrant indexes.', fg='green'))
create_count = 0
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for dataset in datasets:
if dataset.index_struct_dict:
if dataset.index_struct_dict['type'] != 'qdrant':
try:
click.echo('Update dataset qdrant index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002", model_provider=model_provider)
embeddings = CacheEmbedding(embedding_model)
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
index = QdrantVectorIndex(
dataset=dataset,
config=QdrantConfig(
endpoint=current_app.config.get('QDRANT_URL'),
api_key=current_app.config.get('QDRANT_API_KEY'),
root_path=current_app.root_path
),
embeddings=embeddings
)
if index:
index.update_qdrant_dataset(dataset)
create_count += 1
else:
click.echo('passed.')
except Exception as e:
click.echo(
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
continue
click.echo(click.style('Congratulations! Update {} dataset indexes.'.format(create_count), fg='green'))
def register_commands(app):
app.cli.add_command(reset_password)
app.cli.add_command(reset_email)
@@ -303,3 +447,5 @@ def register_commands(app):
app.cli.add_command(recreate_all_dataset_indexes)
app.cli.add_command(sync_anthropic_hosted_providers)
app.cli.add_command(clean_unused_dataset_indexes)
app.cli.add_command(create_qdrant_indexes)
app.cli.add_command(update_qdrant_indexes)

View File

@@ -100,7 +100,7 @@ class Config:
self.CONSOLE_URL = get_env('CONSOLE_URL')
self.API_URL = get_env('API_URL')
self.APP_URL = get_env('APP_URL')
self.CURRENT_VERSION = "0.3.14"
self.CURRENT_VERSION = "0.3.18"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')

View File

@@ -1,4 +1,5 @@
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
import flask_restful
from flask_restful import Resource, fields, marshal_with
from werkzeug.exceptions import Forbidden

View File

@@ -3,7 +3,9 @@ import json
import logging
from datetime import datetime
from flask_login import login_required, current_user
import flask
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with, abort, inputs
from werkzeug.exceptions import Forbidden
@@ -316,7 +318,7 @@ class AppApi(Resource):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
app = _get_app(app_id, current_user.current_tenant_id)
db.session.delete(app)

View File

@@ -2,7 +2,7 @@
import logging
from flask import request
from flask_login import login_required
from core.login.login import login_required
from werkzeug.exceptions import InternalServerError, NotFound
import services

View File

@@ -5,7 +5,7 @@ from typing import Generator, Union
import flask_login
from flask import Response, stream_with_context
from flask_login import login_required
from core.login.login import login_required
from werkzeug.exceptions import InternalServerError, NotFound
import services

View File

@@ -1,7 +1,8 @@
from datetime import datetime
import pytz
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with
from flask_restful.inputs import int_range
from sqlalchemy import or_, func

View File

@@ -1,4 +1,5 @@
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse
from controllers.console import api

View File

@@ -3,7 +3,7 @@ import logging
from typing import Union, Generator
from flask import Response, stream_with_context
from flask_login import current_user, login_required
from flask_login import current_user
from flask_restful import Resource, reqparse, marshal_with, fields
from flask_restful.inputs import int_range
from werkzeug.exceptions import InternalServerError, NotFound
@@ -16,6 +16,7 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import LLMRateLimitError, LLMBadRequestError, LLMAuthorizationError, LLMAPIConnectionError, \
ProviderTokenNotInitError, LLMAPIUnavailableError, QuotaExceededError, ModelCurrentlyNotSupportError
from core.login.login import login_required
from libs.helper import uuid_value, TimestampField
from libs.infinite_scroll_pagination import InfiniteScrollPagination
from extensions.ext_database import db

View File

@@ -3,12 +3,13 @@ import json
from flask import request
from flask_restful import Resource
from flask_login import login_required, current_user
from flask_login import current_user
from controllers.console import api
from controllers.console.app import _get_app
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.login.login import login_required
from events.app_event import app_model_config_was_updated
from extensions.ext_database import db
from models.model import AppModelConfig

View File

@@ -1,5 +1,6 @@
# -*- coding:utf-8 -*-
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with
from werkzeug.exceptions import NotFound, Forbidden

View File

@@ -4,7 +4,8 @@ from datetime import datetime
import pytz
from flask import jsonify
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse
from controllers.console import api

View File

@@ -5,9 +5,12 @@ from typing import Optional
import flask_login
import requests
from flask import request, redirect, current_app, session
from flask_login import current_user, login_required
from flask_login import current_user
from flask_restful import Resource
from werkzeug.exceptions import Forbidden
from core.login.login import login_required
from libs.oauth_data_source import NotionOAuth
from controllers.console import api
from ..setup import setup_required

View File

@@ -3,7 +3,8 @@ import json
from cachetools import TTLCache
from flask import request, current_app
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, marshal_with, fields, reqparse, marshal
from werkzeug.exceptions import NotFound

View File

@@ -1,6 +1,7 @@
# -*- coding:utf-8 -*-
from flask import request
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal, marshal_with
from werkzeug.exceptions import NotFound, Forbidden
import services
@@ -86,13 +87,19 @@ class DatasetListApi(Resource):
# raise ProviderNotInitializeError(
# f"No Embedding Model available. Please configure a valid provider "
# f"in the Settings -> Model Provider.")
model_names = [item['model_name'] for item in valid_model_list]
model_names = []
for valid_model in valid_model_list:
model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
data = marshal(datasets, dataset_detail_fields)
for item in data:
if item['embedding_model'] in model_names:
item['embedding_available'] = True
if item['indexing_technique'] == 'high_quality':
item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
if item_model in model_names:
item['embedding_available'] = True
else:
item['embedding_available'] = False
else:
item['embedding_available'] = False
item['embedding_available'] = True
response = {
'data': data,
'has_more': len(datasets) == limit,
@@ -118,14 +125,6 @@ class DatasetListApi(Resource):
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
try:
dataset = DatasetService.create_empty_dataset(
@@ -149,20 +148,39 @@ class DatasetApi(Resource):
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(
dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
return marshal(dataset, dataset_detail_fields), 200
data = marshal(dataset, dataset_detail_fields)
# check embedding setting
provider_service = ProviderService()
# get valid model list
valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id, ModelType.EMBEDDINGS.value)
model_names = []
for valid_model in valid_model_list:
model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
if data['indexing_technique'] == 'high_quality':
item_model = f"{data['embedding_model']}:{data['embedding_model_provider']}"
if item_model in model_names:
data['embedding_available'] = True
else:
data['embedding_available'] = False
else:
data['embedding_available'] = True
return data, 200
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
parser = reqparse.RequestParser()
parser.add_argument('name', nullable=False,
@@ -250,6 +268,7 @@ class DatasetIndexingEstimateApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
parser.add_argument('indexing_technique', type=str, required=True, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('dataset_id', type=str, required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, location='json')
@@ -271,7 +290,8 @@ class DatasetIndexingEstimateApi(Resource):
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
args['process_rule'], args['doc_form'],
args['doc_language'], args['dataset_id'])
args['doc_language'], args['dataset_id'],
args['indexing_technique'])
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
@@ -286,7 +306,8 @@ class DatasetIndexingEstimateApi(Resource):
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
args['info_list']['notion_info_list'],
args['process_rule'], args['doc_form'],
args['doc_language'], args['dataset_id'])
args['doc_language'], args['dataset_id'],
args['indexing_technique'])
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "

View File

@@ -3,8 +3,9 @@ import random
from datetime import datetime
from typing import List
from flask import request
from flask_login import login_required, current_user
from flask import request, current_app
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, fields, marshal, marshal_with, reqparse
from sqlalchemy import desc, asc
from werkzeug.exceptions import NotFound, Forbidden
@@ -137,6 +138,10 @@ class GetProcessRuleApi(Resource):
req_data = request.args
document_id = req_data.get('document_id')
# get default rules
mode = DocumentService.DEFAULT_RULES['mode']
rules = DocumentService.DEFAULT_RULES['rules']
if document_id:
# get the latest process rule
document = Document.query.get_or_404(document_id)
@@ -157,11 +162,9 @@ class GetProcessRuleApi(Resource):
order_by(DatasetProcessRule.created_at.desc()). \
limit(1). \
one_or_none()
mode = dataset_process_rule.mode
rules = dataset_process_rule.rules_dict
else:
mode = DocumentService.DEFAULT_RULES['mode']
rules = DocumentService.DEFAULT_RULES['rules']
if dataset_process_rule:
mode = dataset_process_rule.mode
rules = dataset_process_rule.rules_dict
return {
'mode': mode,
@@ -274,7 +277,8 @@ class DatasetDocumentListApi(Resource):
parser.add_argument('duplicate', type=bool, nullable=False, location='json')
parser.add_argument('original_document_id', type=str, required=False, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
location='json')
args = parser.parse_args()
if not dataset.indexing_technique and not args['indexing_technique']:
@@ -283,20 +287,6 @@ class DatasetDocumentListApi(Resource):
# validate args
DocumentService.document_create_args_validate(args)
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
try:
documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user)
except ProviderTokenNotInitError as ex:
@@ -334,17 +324,20 @@ class DatasetInitApi(Resource):
parser.add_argument('data_source', type=dict, required=True, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, location='json')
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
location='json')
args = parser.parse_args()
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
if args['indexing_technique'] == 'high_quality':
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# validate args
DocumentService.document_create_args_validate(args)
@@ -413,7 +406,8 @@ class DocumentIndexingEstimateApi(DocumentResource):
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, [file],
data_process_rule_dict, None, dataset_id)
data_process_rule_dict, None,
'English', dataset_id)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
@@ -482,7 +476,8 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
indexing_runner = IndexingRunner()
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
data_process_rule_dict, None, dataset_id)
data_process_rule_dict, None,
'English', dataset_id)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
@@ -496,7 +491,7 @@ class DocumentBatchIndexingEstimateApi(DocumentResource):
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
info_list,
data_process_rule_dict,
None, dataset_id)
None, 'English', dataset_id)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
@@ -724,6 +719,12 @@ class DocumentDeleteApi(DocumentResource):
def delete(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
document = self.get_document(dataset_id, document_id)
try:
@@ -764,11 +765,13 @@ class DocumentMetadataApi(DocumentResource):
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type]
document.doc_metadata = {}
for key, value_type in metadata_schema.items():
value = doc_metadata.get(key)
if value is not None and isinstance(value, value_type):
document.doc_metadata[key] = value
if doc_type == 'others':
document.doc_metadata = doc_metadata
else:
for key, value_type in metadata_schema.items():
value = doc_metadata.get(key)
if value is not None and isinstance(value, value_type):
document.doc_metadata[key] = value
document.doc_type = doc_type
document.updated_at = datetime.utcnow()
@@ -784,6 +787,12 @@ class DocumentStatusApi(DocumentResource):
def patch(self, dataset_id, document_id, action):
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
document = self.get_document(dataset_id, document_id)
# The role of the current user in the ta table must be admin or owner
@@ -852,6 +861,14 @@ class DocumentStatusApi(DocumentResource):
if not document.archived:
raise InvalidActionError('Document is not archived.')
# check document limit
if current_app.config['EDITION'] == 'CLOUD':
documents_count = DocumentService.get_tenant_documents_count()
total_count = documents_count + 1
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
if total_count > tenant_document_count:
raise ValueError(f"All your documents have overed limit {tenant_document_count}.")
document.archived = False
document.archived_at = None
document.archived_by = None
@@ -869,6 +886,10 @@ class DocumentStatusApi(DocumentResource):
class DocumentPauseApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id):
"""pause document."""
dataset_id = str(dataset_id)
@@ -898,6 +919,9 @@ class DocumentPauseApi(DocumentResource):
class DocumentRecoverApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id):
"""recover document."""
dataset_id = str(dataset_id)
@@ -923,6 +947,21 @@ class DocumentRecoverApi(DocumentResource):
return {'result': 'success'}, 204
class DocumentLimitApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self):
"""get document limit"""
documents_count = DocumentService.get_tenant_documents_count()
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
return {
'documents_count': documents_count,
'documents_limit': tenant_document_count
}, 200
api.add_resource(GetProcessRuleApi, '/datasets/process-rule')
api.add_resource(DatasetDocumentListApi,
'/datasets/<uuid:dataset_id>/documents')
@@ -948,3 +987,4 @@ api.add_resource(DocumentStatusApi,
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/status/<string:action>')
api.add_resource(DocumentPauseApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause')
api.add_resource(DocumentRecoverApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume')
api.add_resource(DocumentLimitApi, '/datasets/limit')

View File

@@ -1,9 +1,8 @@
# -*- coding:utf-8 -*-
import uuid
from datetime import datetime
from flask import request
from flask_login import login_required, current_user
from flask_login import current_user
from flask_restful import Resource, reqparse, fields, marshal
from werkzeug.exceptions import NotFound, Forbidden
@@ -15,6 +14,7 @@ from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_providers.model_factory import ModelFactory
from core.login.login import login_required
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import DocumentSegment
@@ -149,7 +149,8 @@ class DatasetDocumentSegmentApi(Resource):
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# The role of the current user in the ta table must be admin or owner
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
@@ -158,20 +159,20 @@ class DatasetDocumentSegmentApi(Resource):
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
if dataset.indexing_technique == 'high_quality':
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id),
@@ -244,18 +245,19 @@ class DatasetDocumentSegmentAddApi(Resource):
if current_user.current_tenant.current_role not in ['admin', 'owner']:
raise Forbidden()
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
if dataset.indexing_technique == 'high_quality':
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
@@ -284,25 +286,28 @@ class DatasetDocumentSegmentUpdateApi(Resource):
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# check segment
if dataset.indexing_technique == 'high_quality':
# check embedding model setting
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# check segment
segment_id = str(segment_id)
segment = DocumentSegment.query.filter(
DocumentSegment.id == str(segment_id),
@@ -339,6 +344,8 @@ class DatasetDocumentSegmentUpdateApi(Resource):
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound('Dataset not found.')
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check document
document_id = str(document_id)
document = DocumentService.get_document(dataset_id, document_id)
@@ -378,18 +385,6 @@ class DatasetDocumentSegmentBatchImportApi(Resource):
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound('Document not found.')
try:
ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# get file from request
file = request.files['file']
# check file

View File

@@ -8,7 +8,8 @@ from pathlib import Path
from cachetools import TTLCache
from flask import request, current_app
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, marshal_with, fields
from werkzeug.exceptions import NotFound

View File

@@ -1,6 +1,7 @@
import logging
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, marshal, fields
from werkzeug.exceptions import InternalServerError, NotFound, Forbidden

View File

@@ -1,7 +1,8 @@
# -*- coding:utf-8 -*-
from datetime import datetime
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with, inputs
from sqlalchemy import and_
from werkzeug.exceptions import NotFound, Forbidden, BadRequest

View File

@@ -1,5 +1,6 @@
# -*- coding:utf-8 -*-
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, fields, marshal_with
from sqlalchemy import and_

View File

@@ -1,4 +1,5 @@
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource
from functools import wraps

View File

@@ -1,7 +1,8 @@
import json
from functools import wraps
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required

View File

@@ -3,7 +3,8 @@ from datetime import datetime
import pytz
from flask import current_app, request
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, fields, marshal_with
from services.errors.account import CurrentPasswordIncorrectError as ServiceCurrentPasswordIncorrectError

View File

@@ -1,6 +1,7 @@
# -*- coding:utf-8 -*-
from flask import current_app
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse, marshal_with, abort, fields, marshal
import services

View File

@@ -1,4 +1,5 @@
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden

View File

@@ -1,4 +1,5 @@
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse
from controllers.console import api

View File

@@ -1,5 +1,6 @@
# -*- coding:utf-8 -*-
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden

View File

@@ -1,6 +1,7 @@
import json
from flask_login import login_required, current_user
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, abort, reqparse
from werkzeug.exceptions import Forbidden

View File

@@ -2,10 +2,13 @@
import logging
from flask import request
from flask_login import login_required, current_user
from flask_restful import Resource, fields, marshal_with, reqparse, marshal
from flask_login import current_user
from core.login.login import login_required
from flask_restful import Resource, fields, marshal_with, reqparse, marshal, inputs
from flask_restful.inputs import int_range
from controllers.console import api
from controllers.console.admin import admin_required
from controllers.console.setup import setup_required
from controllers.console.error import AccountNotLinkTenantError
from controllers.console.wraps import account_initialization_required
@@ -43,6 +46,13 @@ tenants_fields = {
'current': fields.Boolean
}
workspace_fields = {
'id': fields.String,
'name': fields.String,
'status': fields.String,
'created_at': TimestampField
}
class TenantListApi(Resource):
@setup_required
@@ -57,6 +67,38 @@ class TenantListApi(Resource):
return {'workspaces': marshal(tenants, tenants_fields)}, 200
class WorkspaceListApi(Resource):
@setup_required
@admin_required
def get(self):
parser = reqparse.RequestParser()
parser.add_argument('page', type=inputs.int_range(1, 99999), required=False, default=1, location='args')
parser.add_argument('limit', type=inputs.int_range(1, 100), required=False, default=20, location='args')
args = parser.parse_args()
tenants = db.session.query(Tenant).order_by(Tenant.created_at.desc())\
.paginate(page=args['page'], per_page=args['limit'])
has_more = False
if len(tenants.items) == args['limit']:
current_page_first_tenant = tenants[-1]
rest_count = db.session.query(Tenant).filter(
Tenant.created_at < current_page_first_tenant.created_at,
Tenant.id != current_page_first_tenant.id
).count()
if rest_count > 0:
has_more = True
total = db.session.query(Tenant).count()
return {
'data': marshal(tenants.items, workspace_fields),
'has_more': has_more,
'limit': args['limit'],
'page': args['page'],
'total': total
}, 200
class TenantApi(Resource):
@setup_required
@login_required
@@ -92,6 +134,7 @@ class SwitchWorkspaceApi(Resource):
api.add_resource(TenantListApi, '/workspaces') # GET for getting all tenants
api.add_resource(WorkspaceListApi, '/all-workspaces') # GET for getting all tenants
api.add_resource(TenantApi, '/workspaces/current', endpoint='workspaces_current') # GET for getting current tenant info
api.add_resource(TenantApi, '/info', endpoint='info') # Deprecated
api.add_resource(SwitchWorkspaceApi, '/workspaces/switch') # POST for switching tenant

View File

@@ -52,7 +52,7 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
elif len(self.tools) == 1:
tool = next(iter(self.tools))
tool = cast(DatasetRetrieverTool, tool)
rst = tool.run(tool_input={'dataset_id': tool.dataset_id, 'query': kwargs['input']})
rst = tool.run(tool_input={'query': kwargs['input']})
return AgentFinish(return_values={"output": rst}, log=rst)
if intermediate_steps:
@@ -60,7 +60,13 @@ class MultiDatasetRouterAgent(OpenAIFunctionsAgent):
return AgentFinish(return_values={"output": observation}, log=observation)
try:
return super().plan(intermediate_steps, callbacks, **kwargs)
agent_decision = super().plan(intermediate_steps, callbacks, **kwargs)
if isinstance(agent_decision, AgentAction):
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
return agent_decision
except Exception as e:
new_exception = self.model_instance.handle_exceptions(e)
raise new_exception

View File

@@ -45,7 +45,7 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
:return:
"""
original_max_tokens = self.llm.max_tokens
self.llm.max_tokens = 15
self.llm.max_tokens = 40
prompt = self.prompt.format_prompt(input=query, agent_scratchpad=[])
messages = prompt.to_messages()
@@ -97,6 +97,13 @@ class AutoSummarizingOpenAIFunctionCallAgent(OpenAIFunctionsAgent, OpenAIFunctio
messages, functions=self.functions, callbacks=callbacks
)
agent_decision = _parse_ai_message(predicted_message)
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
return agent_decision
@classmethod

View File

@@ -90,7 +90,7 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
elif len(self.dataset_tools) == 1:
tool = next(iter(self.dataset_tools))
tool = cast(DatasetRetrieverTool, tool)
rst = tool.run(tool_input={'dataset_id': tool.dataset_id, 'query': kwargs['input']})
rst = tool.run(tool_input={'query': kwargs['input']})
return AgentFinish(return_values={"output": rst}, log=rst)
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
@@ -102,7 +102,13 @@ class StructuredMultiDatasetRouterAgent(StructuredChatAgent):
raise new_exception
try:
return self.output_parser.parse(full_output)
agent_decision = self.output_parser.parse(full_output)
if isinstance(agent_decision, AgentAction):
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
return agent_decision
except OutputParserException:
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
"I don't know how to respond to that."}, "")

View File

@@ -106,7 +106,13 @@ class AutoSummarizingStructuredChatAgent(StructuredChatAgent, CalcTokenMixin):
raise new_exception
try:
return self.output_parser.parse(full_output)
agent_decision = self.output_parser.parse(full_output)
if isinstance(agent_decision, AgentAction) and agent_decision.tool == 'dataset':
tool_inputs = agent_decision.tool_input
if isinstance(tool_inputs, dict) and 'query' in tool_inputs:
tool_inputs['query'] = kwargs['input']
agent_decision.tool_input = tool_inputs
return agent_decision
except OutputParserException:
return AgentFinish({"output": "I'm sorry, the answer of model is invalid, "
"I don't know how to respond to that."}, "")

View File

@@ -1,5 +1,6 @@
import json
import logging
from json import JSONDecodeError
from typing import Any, Dict, List, Union, Optional
@@ -44,10 +45,15 @@ class DatasetToolCallbackHandler(BaseCallbackHandler):
input_str: str,
**kwargs: Any,
) -> None:
# tool_name = serialized.get('name')
input_dict = json.loads(input_str.replace("'", "\""))
dataset_id = input_dict.get('dataset_id')
query = input_dict.get('query')
tool_name: str = serialized.get('name')
dataset_id = tool_name.removeprefix('dataset-')
try:
input_dict = json.loads(input_str.replace("'", "\""))
query = input_dict.get('query')
except JSONDecodeError:
query = input_str
self.conversation_message_task.on_dataset_query_end(DatasetQueryObj(dataset_id=dataset_id, query=query))
def on_tool_end(

View File

@@ -130,13 +130,12 @@ class Completion:
fake_response = agent_execute_result.output
# get llm prompt
prompt_messages, stop_words = cls.get_main_llm_prompt(
prompt_messages, stop_words = model_instance.get_prompt(
mode=mode,
model=app_model_config.model_dict,
pre_prompt=app_model_config.pre_prompt,
query=query,
inputs=inputs,
agent_execute_result=agent_execute_result,
query=query,
context=agent_execute_result.output if agent_execute_result else None,
memory=memory
)
@@ -154,113 +153,6 @@ class Completion:
return response
@classmethod
def get_main_llm_prompt(cls, mode: str, model: dict,
pre_prompt: str, query: str, inputs: dict,
agent_execute_result: Optional[AgentExecuteResult],
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory]) -> \
Tuple[List[PromptMessage], Optional[List[str]]]:
if mode == 'completion':
prompt_template = JinjaPromptTemplate.from_template(
template=("""Use the following context as your learned knowledge, inside <context></context> XML tags.
<context>
{{context}}
</context>
When answer to user:
- If you don't know, just say that you don't know.
- If you don't know when you are not sure, ask for clarification.
Avoid mentioning that you obtained the information from the context.
And answer according to the language of the user's question.
""" if agent_execute_result else "")
+ (pre_prompt + "\n" if pre_prompt else "")
+ "{{query}}\n"
)
if agent_execute_result:
inputs['context'] = agent_execute_result.output
prompt_inputs = {k: inputs[k] for k in prompt_template.input_variables if k in inputs}
prompt_content = prompt_template.format(
query=query,
**prompt_inputs
)
return [PromptMessage(content=prompt_content)], None
else:
messages: List[BaseMessage] = []
human_inputs = {
"query": query
}
human_message_prompt = ""
if pre_prompt:
pre_prompt_inputs = {k: inputs[k] for k in
JinjaPromptTemplate.from_template(template=pre_prompt).input_variables
if k in inputs}
if pre_prompt_inputs:
human_inputs.update(pre_prompt_inputs)
if agent_execute_result:
human_inputs['context'] = agent_execute_result.output
human_message_prompt += """Use the following context as your learned knowledge, inside <context></context> XML tags.
<context>
{{context}}
</context>
When answer to user:
- If you don't know, just say that you don't know.
- If you don't know when you are not sure, ask for clarification.
Avoid mentioning that you obtained the information from the context.
And answer according to the language of the user's question.
"""
if pre_prompt:
human_message_prompt += pre_prompt
query_prompt = "\n\nHuman: {{query}}\n\nAssistant: "
if memory:
# append chat histories
tmp_human_message = PromptBuilder.to_human_message(
prompt_content=human_message_prompt + query_prompt,
inputs=human_inputs
)
if memory.model_instance.model_rules.max_tokens.max:
curr_message_tokens = memory.model_instance.get_num_tokens(to_prompt_messages([tmp_human_message]))
max_tokens = model.get("completion_params").get('max_tokens')
rest_tokens = memory.model_instance.model_rules.max_tokens.max - max_tokens - curr_message_tokens
rest_tokens = max(rest_tokens, 0)
else:
rest_tokens = 2000
histories = cls.get_history_messages_from_memory(memory, rest_tokens)
human_message_prompt += "\n\n" if human_message_prompt else ""
human_message_prompt += "Here is the chat histories between human and assistant, " \
"inside <histories></histories> XML tags.\n\n<histories>\n"
human_message_prompt += histories + "\n</histories>"
human_message_prompt += query_prompt
# construct main prompt
human_message = PromptBuilder.to_human_message(
prompt_content=human_message_prompt,
inputs=human_inputs
)
messages.append(human_message)
for message in messages:
message.content = re.sub(r'<\|.*?\|>', '', message.content)
return to_prompt_messages(messages), ['\nHuman:', '</histories>']
@classmethod
def get_history_messages_from_memory(cls, memory: ReadOnlyConversationTokenDBBufferSharedMemory,
max_token_limit: int) -> str:
@@ -307,13 +199,12 @@ And answer according to the language of the user's question.
max_tokens = 0
# get prompt without memory and context
prompt_messages, _ = cls.get_main_llm_prompt(
prompt_messages, _ = model_instance.get_prompt(
mode=mode,
model=app_model_config.model_dict,
pre_prompt=app_model_config.pre_prompt,
query=query,
inputs=inputs,
agent_execute_result=None,
query=query,
context=None,
memory=None
)
@@ -358,13 +249,12 @@ And answer according to the language of the user's question.
)
# get llm prompt
old_prompt_messages, _ = cls.get_main_llm_prompt(
mode="completion",
model=app_model_config.model_dict,
old_prompt_messages, _ = final_model_instance.get_prompt(
mode='completion',
pre_prompt=pre_prompt,
query=message.query,
inputs=message.inputs,
agent_execute_result=None,
query=message.query,
context=None,
memory=None
)

View File

@@ -137,7 +137,8 @@ class ConversationMessageTask:
db.session.flush()
def append_message_text(self, text: str):
self._pub_handler.pub_text(text)
if text is not None:
self._pub_handler.pub_text(text)
def save_message(self, llm_message: LLMMessage, by_stopped: bool = False):
message_tokens = llm_message.prompt_tokens

View File

@@ -30,6 +30,8 @@ class ExcelLoader(BaseLoader):
wb = load_workbook(filename=self._file_path, read_only=True)
# loop over all sheets
for sheet in wb:
if 'A1:A1' == sheet.calculate_dimension():
sheet.reset_dimensions()
for row in sheet.iter_rows(values_only=True):
if all(v is None for v in row):
continue
@@ -38,7 +40,7 @@ class ExcelLoader(BaseLoader):
else:
row_dict = dict(zip(keys, list(map(str, row))))
row_dict = {k: v for k, v in row_dict.items() if v}
item = ''.join(f'{k}:{v}\n' for k, v in row_dict.items())
item = ''.join(f'{k}:{v};' for k, v in row_dict.items())
document = Document(page_content=item, metadata={'source': self._file_path})
data.append(document)

View File

@@ -67,12 +67,13 @@ class DatesetDocumentStore:
if max_position is None:
max_position = 0
embedding_model = ModelFactory.get_embedding_model(
tenant_id=self._dataset.tenant_id,
model_provider_name=self._dataset.embedding_model_provider,
model_name=self._dataset.embedding_model
)
embedding_model = None
if self._dataset.indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=self._dataset.tenant_id,
model_provider_name=self._dataset.embedding_model_provider,
model_name=self._dataset.embedding_model
)
for doc in docs:
if not isinstance(doc, Document):
@@ -88,7 +89,7 @@ class DatesetDocumentStore:
)
# calc embedding use tokens
tokens = embedding_model.get_num_tokens(doc.page_content)
tokens = embedding_model.get_num_tokens(doc.page_content) if embedding_model else 0
if not segment_document:
max_position += 1
@@ -103,6 +104,7 @@ class DatesetDocumentStore:
content=doc.page_content,
word_count=len(doc.page_content),
tokens=tokens,
enabled=False,
created_by=self._user_id,
)
if 'answer' in doc.metadata and doc.metadata['answer']:

View File

@@ -1,6 +1,7 @@
import logging
from typing import List
import numpy as np
from langchain.embeddings.base import Embeddings
from sqlalchemy.exc import IntegrityError
@@ -32,14 +33,17 @@ class CacheEmbedding(Embeddings):
embedding_results = self._embeddings.client.embed_documents(embedding_queue_texts)
except Exception as ex:
raise self._embeddings.handle_exceptions(ex)
i = 0
normalized_embedding_results = []
for text in embedding_queue_texts:
hash = helper.generate_text_hash(text)
try:
embedding = Embedding(model_name=self._embeddings.name, hash=hash)
embedding.set_embedding(embedding_results[i])
vector = embedding_results[i]
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
normalized_embedding_results.append(normalized_embedding)
embedding.set_embedding(normalized_embedding)
db.session.add(embedding)
db.session.commit()
except IntegrityError:
@@ -51,7 +55,7 @@ class CacheEmbedding(Embeddings):
finally:
i += 1
text_embeddings.extend(embedding_results)
text_embeddings.extend(normalized_embedding_results)
return text_embeddings
def embed_query(self, text: str) -> List[float]:
@@ -64,6 +68,7 @@ class CacheEmbedding(Embeddings):
try:
embedding_results = self._embeddings.client.embed_query(text)
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
except Exception as ex:
raise self._embeddings.handle_exceptions(ex)
@@ -79,4 +84,3 @@ class CacheEmbedding(Embeddings):
return embedding_results

View File

@@ -1,10 +1,18 @@
import json
from flask import current_app
from langchain.embeddings import OpenAIEmbeddings
from core.embedding.cached_embedding import CacheEmbedding
from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
from core.index.vector_index.vector_index import VectorIndex
from core.model_providers.model_factory import ModelFactory
from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
from core.model_providers.models.entity.model_params import ModelKwargs
from core.model_providers.models.llm.openai_model import OpenAIModel
from core.model_providers.providers.openai_provider import OpenAIProvider
from models.dataset import Dataset
from models.provider import Provider, ProviderType
class IndexBuilder:
@@ -35,4 +43,13 @@ class IndexBuilder:
)
)
else:
raise ValueError('Unknown indexing technique')
raise ValueError('Unknown indexing technique')
@classmethod
def get_default_high_quality_index(cls, dataset: Dataset):
embeddings = OpenAIEmbeddings(openai_api_key=' ')
return VectorIndex(
dataset=dataset,
config=current_app.config,
embeddings=embeddings
)

View File

@@ -15,12 +15,12 @@ from models.dataset import Document as DatasetDocument
class BaseVectorIndex(BaseIndex):
def __init__(self, dataset: Dataset, embeddings: Embeddings):
super().__init__(dataset)
self._embeddings = embeddings
self._vector_store = None
def get_type(self) -> str:
raise NotImplementedError
@@ -143,7 +143,7 @@ class BaseVectorIndex(BaseIndex):
DocumentSegment.status == 'completed',
DocumentSegment.enabled == True
).all()
for segment in segments:
document = Document(
page_content=segment.content,
@@ -173,3 +173,73 @@ class BaseVectorIndex(BaseIndex):
self.dataset = dataset
logging.info(f"Dataset {dataset.id} recreate successfully.")
def create_qdrant_dataset(self, dataset: Dataset):
logging.info(f"create_qdrant_dataset {dataset.id}")
try:
self.delete()
except UnexpectedStatusCodeException as e:
if e.status_code != 400:
# 400 means index not exists
raise e
dataset_documents = db.session.query(DatasetDocument).filter(
DatasetDocument.dataset_id == dataset.id,
DatasetDocument.indexing_status == 'completed',
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).all()
documents = []
for dataset_document in dataset_documents:
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.status == 'completed',
DocumentSegment.enabled == True
).all()
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)
documents.append(document)
if documents:
try:
self.create(documents)
except Exception as e:
raise e
logging.info(f"Dataset {dataset.id} recreate successfully.")
def update_qdrant_dataset(self, dataset: Dataset):
logging.info(f"update_qdrant_dataset {dataset.id}")
segment = db.session.query(DocumentSegment).filter(
DocumentSegment.dataset_id == dataset.id,
DocumentSegment.status == 'completed',
DocumentSegment.enabled == True
).first()
if segment:
try:
exist = self.text_exists(segment.index_node_id)
if exist:
index_struct = {
"type": 'qdrant',
"vector_store": {"class_prefix": dataset.index_struct_dict['vector_store']['class_prefix']}
}
dataset.index_struct = json.dumps(index_struct)
db.session.commit()
except Exception as e:
raise e
logging.info(f"Dataset {dataset.id} recreate successfully.")

View File

@@ -0,0 +1,114 @@
from typing import Optional, cast
from langchain.embeddings.base import Embeddings
from langchain.schema import Document, BaseRetriever
from langchain.vectorstores import VectorStore, milvus
from pydantic import BaseModel, root_validator
from core.index.base import BaseIndex
from core.index.vector_index.base import BaseVectorIndex
from core.vector_store.milvus_vector_store import MilvusVectorStore
from core.vector_store.weaviate_vector_store import WeaviateVectorStore
from models.dataset import Dataset
class MilvusConfig(BaseModel):
endpoint: str
user: str
password: str
batch_size: int = 100
@root_validator()
def validate_config(cls, values: dict) -> dict:
if not values['endpoint']:
raise ValueError("config MILVUS_ENDPOINT is required")
if not values['user']:
raise ValueError("config MILVUS_USER is required")
if not values['password']:
raise ValueError("config MILVUS_PASSWORD is required")
return values
class MilvusVectorIndex(BaseVectorIndex):
def __init__(self, dataset: Dataset, config: MilvusConfig, embeddings: Embeddings):
super().__init__(dataset, embeddings)
self._client = self._init_client(config)
def get_type(self) -> str:
return 'milvus'
def get_index_name(self, dataset: Dataset) -> str:
if self.dataset.index_struct_dict:
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix']
if not class_prefix.endswith('_Node'):
# original class_prefix
class_prefix += '_Node'
return class_prefix
dataset_id = dataset.id
return "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
def to_index_struct(self) -> dict:
return {
"type": self.get_type(),
"vector_store": {"class_prefix": self.get_index_name(self.dataset)}
}
def create(self, texts: list[Document], **kwargs) -> BaseIndex:
uuids = self._get_uuids(texts)
self._vector_store = WeaviateVectorStore.from_documents(
texts,
self._embeddings,
client=self._client,
index_name=self.get_index_name(self.dataset),
uuids=uuids,
by_text=False
)
return self
def _get_vector_store(self) -> VectorStore:
"""Only for created index."""
if self._vector_store:
return self._vector_store
attributes = ['doc_id', 'dataset_id', 'document_id']
if self._is_origin():
attributes = ['doc_id']
return WeaviateVectorStore(
client=self._client,
index_name=self.get_index_name(self.dataset),
text_key='text',
embedding=self._embeddings,
attributes=attributes,
by_text=False
)
def _get_vector_store_class(self) -> type:
return MilvusVectorStore
def delete_by_document_id(self, document_id: str):
if self._is_origin():
self.recreate_dataset(self.dataset)
return
vector_store = self._get_vector_store()
vector_store = cast(self._get_vector_store_class(), vector_store)
vector_store.del_texts({
"operator": "Equal",
"path": ["document_id"],
"valueText": document_id
})
def _is_origin(self):
if self.dataset.index_struct_dict:
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix']
if not class_prefix.endswith('_Node'):
# original class_prefix
return True
return False

File diff suppressed because it is too large Load Diff

View File

@@ -44,15 +44,20 @@ class QdrantVectorIndex(BaseVectorIndex):
def get_index_name(self, dataset: Dataset) -> str:
if self.dataset.index_struct_dict:
return self.dataset.index_struct_dict['vector_store']['collection_name']
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix']
if not class_prefix.endswith('_Node'):
# original class_prefix
class_prefix += '_Node'
return class_prefix
dataset_id = dataset.id
return "Index_" + dataset_id.replace("-", "_")
return "Vector_index_" + dataset_id.replace("-", "_") + '_Node'
def to_index_struct(self) -> dict:
return {
"type": self.get_type(),
"vector_store": {"collection_name": self.get_index_name(self.dataset)}
"vector_store": {"class_prefix": self.get_index_name(self.dataset)}
}
def create(self, texts: list[Document], **kwargs) -> BaseIndex:
@@ -62,7 +67,7 @@ class QdrantVectorIndex(BaseVectorIndex):
self._embeddings,
collection_name=self.get_index_name(self.dataset),
ids=uuids,
content_payload_key='text',
content_payload_key='page_content',
**self._client_config.to_qdrant_params()
)
@@ -72,7 +77,9 @@ class QdrantVectorIndex(BaseVectorIndex):
"""Only for created index."""
if self._vector_store:
return self._vector_store
attributes = ['doc_id', 'dataset_id', 'document_id']
if self._is_origin():
attributes = ['doc_id']
client = qdrant_client.QdrantClient(
**self._client_config.to_qdrant_params()
)
@@ -81,7 +88,7 @@ class QdrantVectorIndex(BaseVectorIndex):
client=client,
collection_name=self.get_index_name(self.dataset),
embeddings=self._embeddings,
content_payload_key='text'
content_payload_key='page_content'
)
def _get_vector_store_class(self) -> type:
@@ -108,8 +115,8 @@ class QdrantVectorIndex(BaseVectorIndex):
def _is_origin(self):
if self.dataset.index_struct_dict:
class_prefix: str = self.dataset.index_struct_dict['vector_store']['collection_name']
if class_prefix.startswith('Vector_'):
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix']
if not class_prefix.endswith('_Node'):
# original class_prefix
return True

View File

@@ -217,25 +217,29 @@ class IndexingRunner:
db.session.commit()
def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None) -> dict:
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
indexing_technique: str = 'economy') -> dict:
"""
Estimate the indexing for the document.
"""
embedding_model = None
if dataset_id:
dataset = Dataset.query.filter_by(
id=dataset_id
).first()
if not dataset:
raise ValueError('Dataset not found.')
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
else:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=tenant_id
)
if indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=tenant_id
)
tokens = 0
preview_texts = []
total_segments = 0
@@ -263,8 +267,8 @@ class IndexingRunner:
for document in documents:
if len(preview_texts) < 5:
preview_texts.append(document.page_content)
tokens += embedding_model.get_num_tokens(self.filter_string(document.page_content))
if indexing_technique == 'high_quality' or embedding_model:
tokens += embedding_model.get_num_tokens(self.filter_string(document.page_content))
if doc_form and doc_form == 'qa_model':
text_generation_model = ModelFactory.get_text_generation_model(
@@ -286,32 +290,35 @@ class IndexingRunner:
return {
"total_segments": total_segments,
"tokens": tokens,
"total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)),
"currency": embedding_model.get_currency(),
"total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0,
"currency": embedding_model.get_currency() if embedding_model else 'USD',
"preview": preview_texts
}
def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict,
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None) -> dict:
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
indexing_technique: str = 'economy') -> dict:
"""
Estimate the indexing for the document.
"""
embedding_model = None
if dataset_id:
dataset = Dataset.query.filter_by(
id=dataset_id
).first()
if not dataset:
raise ValueError('Dataset not found.')
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
else:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=tenant_id
)
if indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=tenant_id
)
# load data from notion
tokens = 0
preview_texts = []
@@ -356,8 +363,8 @@ class IndexingRunner:
for document in documents:
if len(preview_texts) < 5:
preview_texts.append(document.page_content)
tokens += embedding_model.get_num_tokens(document.page_content)
if indexing_technique == 'high_quality' or embedding_model:
tokens += embedding_model.get_num_tokens(document.page_content)
if doc_form and doc_form == 'qa_model':
text_generation_model = ModelFactory.get_text_generation_model(
@@ -379,8 +386,8 @@ class IndexingRunner:
return {
"total_segments": total_segments,
"tokens": tokens,
"total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)),
"currency": embedding_model.get_currency(),
"total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0,
"currency": embedding_model.get_currency() if embedding_model else 'USD',
"preview": preview_texts
}
@@ -399,7 +406,8 @@ class IndexingRunner:
filter(UploadFile.id == data_source_info['upload_file_id']). \
one_or_none()
text_docs = FileExtractor.load(file_detail)
if file_detail:
text_docs = FileExtractor.load(file_detail)
elif dataset_document.data_source_type == 'notion_import':
loader = NotionLoader.from_document(dataset_document)
text_docs = loader.load()
@@ -525,12 +533,13 @@ class IndexingRunner:
documents = splitter.split_documents([text_doc])
split_documents = []
for document_node in documents:
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document_node.page_content)
document_node.metadata['doc_id'] = doc_id
document_node.metadata['doc_hash'] = hash
split_documents.append(document_node)
if document_node.page_content.strip():
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document_node.page_content)
document_node.metadata['doc_id'] = doc_id
document_node.metadata['doc_hash'] = hash
split_documents.append(document_node)
all_documents.extend(split_documents)
# processing qa document
if document_form == 'qa_model':
@@ -656,12 +665,13 @@ class IndexingRunner:
"""
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
embedding_model = None
if dataset.indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
# chunk nodes by chunk size
indexing_start_at = time.perf_counter()
@@ -671,11 +681,11 @@ class IndexingRunner:
# check document is paused
self._check_document_paused_status(dataset_document.id)
chunk_documents = documents[i:i + chunk_size]
tokens += sum(
embedding_model.get_num_tokens(document.page_content)
for document in chunk_documents
)
if dataset.indexing_technique == 'high_quality' or embedding_model:
tokens += sum(
embedding_model.get_num_tokens(document.page_content)
for document in chunk_documents
)
# save vector index
if vector_index:
@@ -691,6 +701,7 @@ class IndexingRunner:
DocumentSegment.status == "indexing"
).update({
DocumentSegment.status: "completed",
DocumentSegment.enabled: True,
DocumentSegment.completed_at: datetime.datetime.utcnow()
})

108
api/core/login/login.py Normal file
View File

@@ -0,0 +1,108 @@
import os
from functools import wraps
import flask_login
from flask import current_app
from flask import g
from flask import has_request_context
from flask import request
from flask_login import user_logged_in
from flask_login.config import EXEMPT_METHODS
from werkzeug.exceptions import Unauthorized
from werkzeug.local import LocalProxy
from extensions.ext_database import db
from models.account import Account, Tenant, TenantAccountJoin
#: A proxy for the current user. If no user is logged in, this will be an
#: anonymous user
current_user = LocalProxy(lambda: _get_user())
def login_required(func):
"""
If you decorate a view with this, it will ensure that the current user is
logged in and authenticated before calling the actual view. (If they are
not, it calls the :attr:`LoginManager.unauthorized` callback.) For
example::
@app.route('/post')
@login_required
def post():
pass
If there are only certain times you need to require that your user is
logged in, you can do so with::
if not current_user.is_authenticated:
return current_app.login_manager.unauthorized()
...which is essentially the code that this function adds to your views.
It can be convenient to globally turn off authentication when unit testing.
To enable this, if the application configuration variable `LOGIN_DISABLED`
is set to `True`, this decorator will be ignored.
.. Note ::
Per `W3 guidelines for CORS preflight requests
<http://www.w3.org/TR/cors/#cross-origin-request-with-preflight-0>`_,
HTTP ``OPTIONS`` requests are exempt from login checks.
:param func: The view function to decorate.
:type func: function
"""
@wraps(func)
def decorated_view(*args, **kwargs):
auth_header = request.headers.get('Authorization')
admin_api_key_enable = os.getenv('ADMIN_API_KEY_ENABLE', default='False')
if admin_api_key_enable:
if auth_header:
if ' ' not in auth_header:
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
auth_scheme, auth_token = auth_header.split(None, 1)
auth_scheme = auth_scheme.lower()
if auth_scheme != 'bearer':
raise Unauthorized('Invalid Authorization header format. Expected \'Bearer <api-key>\' format.')
admin_api_key = os.getenv('ADMIN_API_KEY')
if admin_api_key:
if os.getenv('ADMIN_API_KEY') == auth_token:
workspace_id = request.headers.get('X-WORKSPACE-ID')
if workspace_id:
tenant_account_join = db.session.query(Tenant, TenantAccountJoin) \
.filter(Tenant.id == workspace_id) \
.filter(TenantAccountJoin.tenant_id == Tenant.id) \
.filter(TenantAccountJoin.role == 'owner') \
.one_or_none()
if tenant_account_join:
tenant, ta = tenant_account_join
account = Account.query.filter_by(id=ta.account_id).first()
# Login admin
if account:
account.current_tenant = tenant
current_app.login_manager._update_request_context_with_user(account)
user_logged_in.send(current_app._get_current_object(), user=_get_user())
if request.method in EXEMPT_METHODS or current_app.config.get("LOGIN_DISABLED"):
pass
elif not current_user.is_authenticated:
return current_app.login_manager.unauthorized()
# flask 1.x compatibility
# current_app.ensure_sync is only available in Flask >= 2.0
if callable(getattr(current_app, "ensure_sync", None)):
return current_app.ensure_sync(func)(*args, **kwargs)
return func(*args, **kwargs)
return decorated_view
def _get_user():
if has_request_context():
if "_login_user" not in g:
current_app.login_manager._load_user()
return g._login_user
return None

View File

@@ -63,6 +63,9 @@ class ModelProviderFactory:
elif provider_name == 'openllm':
from core.model_providers.providers.openllm_provider import OpenLLMProvider
return OpenLLMProvider
elif provider_name == 'localai':
from core.model_providers.providers.localai_provider import LocalAIProvider
return LocalAIProvider
else:
raise NotImplementedError

View File

@@ -0,0 +1,29 @@
from langchain.embeddings import LocalAIEmbeddings
from replicate.exceptions import ModelError, ReplicateError
from core.model_providers.error import LLMBadRequestError
from core.model_providers.providers.base import BaseModelProvider
from core.model_providers.models.embedding.base import BaseEmbedding
class LocalAIEmbedding(BaseEmbedding):
def __init__(self, model_provider: BaseModelProvider, name: str):
credentials = model_provider.get_model_credentials(
model_name=name,
model_type=self.type
)
client = LocalAIEmbeddings(
model=name,
openai_api_key="1",
openai_api_base=credentials['server_url'],
)
super().__init__(model_provider, client, name)
def handle_exceptions(self, ex: Exception) -> Exception:
if isinstance(ex, (ModelError, ReplicateError)):
return LLMBadRequestError(f"LocalAI embedding: {str(ex)}")
else:
return ex

View File

@@ -1,4 +1,4 @@
from langchain.embeddings import XinferenceEmbeddings
from core.third_party.langchain.embeddings.xinference_embedding import XinferenceEmbedding as XinferenceEmbeddings
from replicate.exceptions import ModelError, ReplicateError
from core.model_providers.error import LLMBadRequestError
@@ -14,7 +14,8 @@ class XinferenceEmbedding(BaseEmbedding):
)
client = XinferenceEmbeddings(
**credentials,
server_url=credentials['server_url'],
model_uid=credentials['model_uid'],
)
super().__init__(model_provider, client, name)

View File

@@ -75,7 +75,7 @@ class AnthropicModel(BaseLLM):
else:
return ex
@classmethod
def support_streaming(cls):
@property
def support_streaming(self):
return True

View File

@@ -141,6 +141,6 @@ class AzureOpenAIModel(BaseLLM):
else:
return ex
@classmethod
def support_streaming(cls):
return True
@property
def support_streaming(self):
return True

View File

@@ -1,17 +1,24 @@
import json
import os
import re
from abc import abstractmethod
from typing import List, Optional, Any, Union
from typing import List, Optional, Any, Union, Tuple
import decimal
from langchain.callbacks.manager import Callbacks
from langchain.memory.chat_memory import BaseChatMemory
from langchain.schema import LLMResult, SystemMessage, AIMessage, HumanMessage, BaseMessage, ChatGeneration
from core.callback_handler.std_out_callback_handler import DifyStreamingStdOutCallbackHandler, DifyStdOutCallbackHandler
from core.model_providers.models.base import BaseProviderModel
from core.model_providers.models.entity.message import PromptMessage, MessageType, LLMRunResult
from core.model_providers.models.entity.message import PromptMessage, MessageType, LLMRunResult, to_prompt_messages
from core.model_providers.models.entity.model_params import ModelType, ModelKwargs, ModelMode, ModelKwargsRules
from core.model_providers.providers.base import BaseModelProvider
from core.prompt.prompt_builder import PromptBuilder
from core.prompt.prompt_template import JinjaPromptTemplate
from core.third_party.langchain.llms.fake import FakeLLM
import logging
logger = logging.getLogger(__name__)
@@ -76,13 +83,14 @@ class BaseLLM(BaseProviderModel):
def price_config(self) -> dict:
def get_or_default():
default_price_config = {
'prompt': decimal.Decimal('0'),
'completion': decimal.Decimal('0'),
'unit': decimal.Decimal('0'),
'currency': 'USD'
}
'prompt': decimal.Decimal('0'),
'completion': decimal.Decimal('0'),
'unit': decimal.Decimal('0'),
'currency': 'USD'
}
rules = self.model_provider.get_rules()
price_config = rules['price_config'][self.base_model_name] if 'price_config' in rules else default_price_config
price_config = rules['price_config'][
self.base_model_name] if 'price_config' in rules else default_price_config
price_config = {
'prompt': decimal.Decimal(price_config['prompt']),
'completion': decimal.Decimal(price_config['completion']),
@@ -90,7 +98,7 @@ class BaseLLM(BaseProviderModel):
'currency': price_config['currency']
}
return price_config
self._price_config = self._price_config if hasattr(self, '_price_config') else get_or_default()
logger.debug(f"model: {self.name} price_config: {self._price_config}")
@@ -130,7 +138,7 @@ class BaseLLM(BaseProviderModel):
result = self._run(
messages=messages,
stop=stop,
callbacks=callbacks if not (self.streaming and not self.support_streaming()) else None,
callbacks=callbacks if not (self.streaming and not self.support_streaming) else None,
**kwargs
)
except Exception as ex:
@@ -141,7 +149,7 @@ class BaseLLM(BaseProviderModel):
else:
completion_content = result.generations[0][0].text
if self.streaming and not self.support_streaming():
if self.streaming and not self.support_streaming:
# use FakeLLM to simulate streaming when current model not support streaming but streaming is True
prompts = self._get_prompt_from_messages(messages, ModelMode.CHAT)
fake_llm = FakeLLM(
@@ -158,7 +166,8 @@ class BaseLLM(BaseProviderModel):
total_tokens = result.llm_output['token_usage']['total_tokens']
else:
prompt_tokens = self.get_num_tokens(messages)
completion_tokens = self.get_num_tokens([PromptMessage(content=completion_content, type=MessageType.ASSISTANT)])
completion_tokens = self.get_num_tokens(
[PromptMessage(content=completion_content, type=MessageType.ASSISTANT)])
total_tokens = prompt_tokens + completion_tokens
self.model_provider.update_last_used()
@@ -289,10 +298,123 @@ class BaseLLM(BaseProviderModel):
else:
self.client.callbacks.extend(callbacks)
@classmethod
def support_streaming(cls):
@property
def support_streaming(self):
return False
def get_prompt(self, mode: str,
pre_prompt: str, inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory]) -> \
Tuple[List[PromptMessage], Optional[List[str]]]:
prompt_rules = self._read_prompt_rules_from_file(self.prompt_file_name(mode))
prompt, stops = self._get_prompt_and_stop(prompt_rules, pre_prompt, inputs, query, context, memory)
return [PromptMessage(content=prompt)], stops
def prompt_file_name(self, mode: str) -> str:
if mode == 'completion':
return 'common_completion'
else:
return 'common_chat'
def _get_prompt_and_stop(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory]) -> Tuple[str, Optional[list]]:
context_prompt_content = ''
if context and 'context_prompt' in prompt_rules:
prompt_template = JinjaPromptTemplate.from_template(template=prompt_rules['context_prompt'])
context_prompt_content = prompt_template.format(
context=context
)
pre_prompt_content = ''
if pre_prompt:
prompt_template = JinjaPromptTemplate.from_template(template=pre_prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.input_variables if k in inputs}
pre_prompt_content = prompt_template.format(
**prompt_inputs
)
prompt = ''
for order in prompt_rules['system_prompt_orders']:
if order == 'context_prompt':
prompt += context_prompt_content
elif order == 'pre_prompt':
prompt += (pre_prompt_content + '\n\n') if pre_prompt_content else ''
query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
if memory and 'histories_prompt' in prompt_rules:
# append chat histories
tmp_human_message = PromptBuilder.to_human_message(
prompt_content=prompt + query_prompt,
inputs={
'query': query
}
)
if self.model_rules.max_tokens.max:
curr_message_tokens = self.get_num_tokens(to_prompt_messages([tmp_human_message]))
max_tokens = self.model_kwargs.max_tokens
rest_tokens = self.model_rules.max_tokens.max - max_tokens - curr_message_tokens
rest_tokens = max(rest_tokens, 0)
else:
rest_tokens = 2000
memory.human_prefix = prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human'
memory.ai_prefix = prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
histories = self._get_history_messages_from_memory(memory, rest_tokens)
prompt_template = JinjaPromptTemplate.from_template(template=prompt_rules['histories_prompt'])
histories_prompt_content = prompt_template.format(
histories=histories
)
prompt = ''
for order in prompt_rules['system_prompt_orders']:
if order == 'context_prompt':
prompt += context_prompt_content
elif order == 'pre_prompt':
prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
elif order == 'histories_prompt':
prompt += histories_prompt_content
prompt_template = JinjaPromptTemplate.from_template(template=query_prompt)
query_prompt_content = prompt_template.format(
query=query
)
prompt += query_prompt_content
prompt = re.sub(r'<\|.*?\|>', '', prompt)
stops = prompt_rules.get('stops')
if stops is not None and len(stops) == 0:
stops = None
return prompt, stops
def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
# Get the absolute path of the subdirectory
prompt_path = os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))),
'prompt/generate_prompts')
json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
# Open the JSON file and read its content
with open(json_file_path, 'r') as json_file:
return json.load(json_file)
def _get_history_messages_from_memory(self, memory: BaseChatMemory,
max_token_limit: int) -> str:
"""Get memory messages."""
memory.max_token_limit = max_token_limit
memory_key = memory.memory_variables[0]
external_context = memory.load_memory_variables({})
return external_context[memory_key]
def _get_prompt_from_messages(self, messages: List[PromptMessage],
model_mode: Optional[ModelMode] = None) -> Union[str | List[BaseMessage]]:
if not model_mode:

View File

@@ -61,7 +61,3 @@ class ChatGLMModel(BaseLLM):
return LLMBadRequestError(f"ChatGLM: {str(ex)}")
else:
return ex
@classmethod
def support_streaming(cls):
return False

View File

@@ -1,16 +1,14 @@
import decimal
from functools import wraps
from typing import List, Optional, Any
from langchain import HuggingFaceHub
from langchain.callbacks.manager import Callbacks
from langchain.llms import HuggingFaceEndpoint
from langchain.schema import LLMResult
from core.model_providers.error import LLMBadRequestError
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage, MessageType
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
from core.third_party.langchain.llms.huggingface_endpoint_llm import HuggingFaceEndpointLLM
class HuggingfaceHubModel(BaseLLM):
@@ -19,12 +17,18 @@ class HuggingfaceHubModel(BaseLLM):
def _init_client(self) -> Any:
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
if self.credentials['huggingfacehub_api_type'] == 'inference_endpoints':
client = HuggingFaceEndpoint(
streaming = self.streaming
if 'baichuan' in self.name.lower():
streaming = False
client = HuggingFaceEndpointLLM(
endpoint_url=self.credentials['huggingfacehub_endpoint_url'],
task='text2text-generation',
task=self.credentials['task_type'],
model_kwargs=provider_model_kwargs,
huggingfacehub_api_token=self.credentials['huggingfacehub_api_token'],
callbacks=self.callbacks,
streaming=streaming
)
else:
client = HuggingFaceHub(
@@ -62,6 +66,15 @@ class HuggingfaceHubModel(BaseLLM):
prompts = self._get_prompt_from_messages(messages)
return self._client.get_num_tokens(prompts)
def prompt_file_name(self, mode: str) -> str:
if 'baichuan' in self.name.lower():
if mode == 'completion':
return 'baichuan_completion'
else:
return 'baichuan_chat'
else:
return super().prompt_file_name(mode)
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
self.client.model_kwargs = provider_model_kwargs
@@ -69,7 +82,10 @@ class HuggingfaceHubModel(BaseLLM):
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"Huggingface Hub: {str(ex)}")
@classmethod
def support_streaming(cls):
return False
@property
def support_streaming(self):
if self.credentials['huggingfacehub_api_type'] == 'inference_endpoints':
if 'baichuan' in self.name.lower():
return False
return True

View File

@@ -0,0 +1,131 @@
import logging
from typing import List, Optional, Any
import openai
from langchain.callbacks.manager import Callbacks
from langchain.schema import LLMResult, get_buffer_string
from core.model_providers.error import LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError, \
LLMRateLimitError, LLMAuthorizationError
from core.model_providers.providers.base import BaseModelProvider
from core.third_party.langchain.llms.chat_open_ai import EnhanceChatOpenAI
from core.third_party.langchain.llms.open_ai import EnhanceOpenAI
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
class LocalAIModel(BaseLLM):
def __init__(self, model_provider: BaseModelProvider,
name: str,
model_kwargs: ModelKwargs,
streaming: bool = False,
callbacks: Callbacks = None):
credentials = model_provider.get_model_credentials(
model_name=name,
model_type=self.type
)
if credentials['completion_type'] == 'chat_completion':
self.model_mode = ModelMode.CHAT
else:
self.model_mode = ModelMode.COMPLETION
super().__init__(model_provider, name, model_kwargs, streaming, callbacks)
def _init_client(self) -> Any:
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
if self.model_mode == ModelMode.COMPLETION:
client = EnhanceOpenAI(
model_name=self.name,
streaming=self.streaming,
callbacks=self.callbacks,
request_timeout=60,
openai_api_key="1",
openai_api_base=self.credentials['server_url'] + '/v1',
**provider_model_kwargs
)
else:
extra_model_kwargs = {
'top_p': provider_model_kwargs.get('top_p')
}
client = EnhanceChatOpenAI(
model_name=self.name,
temperature=provider_model_kwargs.get('temperature'),
max_tokens=provider_model_kwargs.get('max_tokens'),
model_kwargs=extra_model_kwargs,
streaming=self.streaming,
callbacks=self.callbacks,
request_timeout=60,
openai_api_key="1",
openai_api_base=self.credentials['server_url'] + '/v1'
)
return client
def _run(self, messages: List[PromptMessage],
stop: Optional[List[str]] = None,
callbacks: Callbacks = None,
**kwargs) -> LLMResult:
"""
run predict by prompt messages and stop words.
:param messages:
:param stop:
:param callbacks:
:return:
"""
prompts = self._get_prompt_from_messages(messages)
return self._client.generate([prompts], stop, callbacks)
def get_num_tokens(self, messages: List[PromptMessage]) -> int:
"""
get num tokens of prompt messages.
:param messages:
:return:
"""
prompts = self._get_prompt_from_messages(messages)
if isinstance(prompts, str):
return self._client.get_num_tokens(prompts)
else:
return max(sum([self._client.get_num_tokens(get_buffer_string([m])) for m in prompts]) - len(prompts), 0)
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
if self.model_mode == ModelMode.COMPLETION:
for k, v in provider_model_kwargs.items():
if hasattr(self.client, k):
setattr(self.client, k, v)
else:
extra_model_kwargs = {
'top_p': provider_model_kwargs.get('top_p')
}
self.client.temperature = provider_model_kwargs.get('temperature')
self.client.max_tokens = provider_model_kwargs.get('max_tokens')
self.client.model_kwargs = extra_model_kwargs
def handle_exceptions(self, ex: Exception) -> Exception:
if isinstance(ex, openai.error.InvalidRequestError):
logging.warning("Invalid request to LocalAI API.")
return LLMBadRequestError(str(ex))
elif isinstance(ex, openai.error.APIConnectionError):
logging.warning("Failed to connect to LocalAI API.")
return LLMAPIConnectionError(ex.__class__.__name__ + ":" + str(ex))
elif isinstance(ex, (openai.error.APIError, openai.error.ServiceUnavailableError, openai.error.Timeout)):
logging.warning("LocalAI service unavailable.")
return LLMAPIUnavailableError(ex.__class__.__name__ + ":" + str(ex))
elif isinstance(ex, openai.error.RateLimitError):
return LLMRateLimitError(str(ex))
elif isinstance(ex, openai.error.AuthenticationError):
return LLMAuthorizationError(str(ex))
elif isinstance(ex, openai.error.OpenAIError):
return LLMBadRequestError(ex.__class__.__name__ + ":" + str(ex))
else:
return ex
@classmethod
def support_streaming(cls):
return True

View File

@@ -154,8 +154,8 @@ class OpenAIModel(BaseLLM):
else:
return ex
@classmethod
def support_streaming(cls):
@property
def support_streaming(self):
return True
# def is_model_valid_or_raise(self):

View File

@@ -1,13 +1,13 @@
from typing import List, Optional, Any
from langchain.callbacks.manager import Callbacks
from langchain.llms import OpenLLM
from langchain.schema import LLMResult
from core.model_providers.error import LLMBadRequestError
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
from core.third_party.langchain.llms.openllm import OpenLLM
class OpenLLMModel(BaseLLM):
@@ -19,7 +19,7 @@ class OpenLLMModel(BaseLLM):
client = OpenLLM(
server_url=self.credentials.get('server_url'),
callbacks=self.callbacks,
**self.provider_model_kwargs
llm_kwargs=self.provider_model_kwargs
)
return client
@@ -49,12 +49,17 @@ class OpenLLMModel(BaseLLM):
prompts = self._get_prompt_from_messages(messages)
return max(self._client.get_num_tokens(prompts), 0)
def prompt_file_name(self, mode: str) -> str:
if 'baichuan' in self.name.lower():
if mode == 'completion':
return 'baichuan_completion'
else:
return 'baichuan_chat'
else:
return super().prompt_file_name(mode)
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
pass
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"OpenLLM: {str(ex)}")
@classmethod
def support_streaming(cls):
return False

View File

@@ -91,6 +91,6 @@ class ReplicateModel(BaseLLM):
else:
return ex
@classmethod
def support_streaming(cls):
return True
@property
def support_streaming(self):
return True

View File

@@ -65,6 +65,6 @@ class SparkModel(BaseLLM):
else:
return ex
@classmethod
def support_streaming(cls):
return True
@property
def support_streaming(self):
return True

View File

@@ -69,6 +69,6 @@ class TongyiModel(BaseLLM):
else:
return ex
@classmethod
def support_streaming(cls):
@property
def support_streaming(self):
return True

View File

@@ -57,7 +57,3 @@ class WenxinModel(BaseLLM):
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"Wenxin: {str(ex)}")
@classmethod
def support_streaming(cls):
return False

View File

@@ -1,13 +1,13 @@
from typing import List, Optional, Any
from langchain.callbacks.manager import Callbacks
from langchain.llms import Xinference
from langchain.schema import LLMResult
from core.model_providers.error import LLMBadRequestError
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
from core.third_party.langchain.llms.xinference_llm import XinferenceLLM
class XinferenceModel(BaseLLM):
@@ -16,8 +16,9 @@ class XinferenceModel(BaseLLM):
def _init_client(self) -> Any:
self.provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
client = Xinference(
**self.credentials,
client = XinferenceLLM(
server_url=self.credentials['server_url'],
model_uid=self.credentials['model_uid'],
)
client.callbacks = self.callbacks
@@ -58,12 +59,21 @@ class XinferenceModel(BaseLLM):
prompts = self._get_prompt_from_messages(messages)
return max(self._client.get_num_tokens(prompts), 0)
def prompt_file_name(self, mode: str) -> str:
if 'baichuan' in self.name.lower():
if mode == 'completion':
return 'baichuan_completion'
else:
return 'baichuan_chat'
else:
return super().prompt_file_name(mode)
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
pass
def handle_exceptions(self, ex: Exception) -> Exception:
return LLMBadRequestError(f"Xinference: {str(ex)}")
@classmethod
def support_streaming(cls):
@property
def support_streaming(self):
return True

View File

@@ -2,7 +2,6 @@ import json
from typing import Type
from huggingface_hub import HfApi
from langchain.llms import HuggingFaceEndpoint
from core.helper import encrypter
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType
@@ -10,6 +9,7 @@ from core.model_providers.models.llm.huggingface_hub_model import HuggingfaceHub
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
from core.model_providers.models.base import BaseProviderModel
from core.third_party.langchain.llms.huggingface_endpoint_llm import HuggingFaceEndpointLLM
from models.provider import ProviderType
@@ -51,7 +51,7 @@ class HuggingfaceHubProvider(BaseModelProvider):
top_p=KwargRule[float](min=0.01, max=0.99, default=0.7),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](alias='max_new_tokens', min=10, max=1500, default=200),
max_tokens=KwargRule[int](alias='max_new_tokens', min=10, max=4000, default=200),
)
@classmethod
@@ -85,10 +85,16 @@ class HuggingfaceHubProvider(BaseModelProvider):
if 'huggingfacehub_endpoint_url' not in credentials:
raise CredentialsValidateFailedError('Hugging Face Hub Endpoint URL must be provided.')
if 'task_type' not in credentials:
raise CredentialsValidateFailedError('Task Type must be provided.')
if credentials['task_type'] not in ("text2text-generation", "text-generation", "summarization"):
raise CredentialsValidateFailedError('Task Type must be one of text2text-generation, text-generation, summarization.')
try:
llm = HuggingFaceEndpoint(
llm = HuggingFaceEndpointLLM(
endpoint_url=credentials['huggingfacehub_endpoint_url'],
task="text2text-generation",
task=credentials['task_type'],
model_kwargs={"temperature": 0.5, "max_new_tokens": 200},
huggingfacehub_api_token=credentials['huggingfacehub_api_token']
)
@@ -160,6 +166,10 @@ class HuggingfaceHubProvider(BaseModelProvider):
}
credentials = json.loads(provider_model.encrypted_config)
if 'task_type' not in credentials:
credentials['task_type'] = 'text-generation'
if credentials['huggingfacehub_api_token']:
credentials['huggingfacehub_api_token'] = encrypter.decrypt_token(
self.provider.tenant_id,

View File

@@ -0,0 +1,164 @@
import json
from typing import Type
from langchain.embeddings import LocalAIEmbeddings
from langchain.schema import HumanMessage
from core.helper import encrypter
from core.model_providers.models.embedding.localai_embedding import LocalAIEmbedding
from core.model_providers.models.entity.model_params import ModelKwargsRules, ModelType, KwargRule
from core.model_providers.models.llm.localai_model import LocalAIModel
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
from core.model_providers.models.base import BaseProviderModel
from core.third_party.langchain.llms.chat_open_ai import EnhanceChatOpenAI
from core.third_party.langchain.llms.open_ai import EnhanceOpenAI
from models.provider import ProviderType
class LocalAIProvider(BaseModelProvider):
@property
def provider_name(self):
"""
Returns the name of a provider.
"""
return 'localai'
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
return []
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
"""
Returns the model class.
:param model_type:
:return:
"""
if model_type == ModelType.TEXT_GENERATION:
model_class = LocalAIModel
elif model_type == ModelType.EMBEDDINGS:
model_class = LocalAIEmbedding
else:
raise NotImplementedError
return model_class
def get_model_parameter_rules(self, model_name: str, model_type: ModelType) -> ModelKwargsRules:
"""
get model parameter rules.
:param model_name:
:param model_type:
:return:
"""
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=2, default=0.7),
top_p=KwargRule[float](min=0, max=1, default=1),
max_tokens=KwargRule[int](min=10, max=4097, default=16),
)
@classmethod
def is_model_credentials_valid_or_raise(cls, model_name: str, model_type: ModelType, credentials: dict):
"""
check model credentials valid.
:param model_name:
:param model_type:
:param credentials:
"""
if 'server_url' not in credentials:
raise CredentialsValidateFailedError('LocalAI Server URL must be provided.')
try:
if model_type == ModelType.EMBEDDINGS:
model = LocalAIEmbeddings(
model=model_name,
openai_api_key='1',
openai_api_base=credentials['server_url']
)
model.embed_query("ping")
else:
if ('completion_type' not in credentials
or credentials['completion_type'] not in ['completion', 'chat_completion']):
raise CredentialsValidateFailedError('LocalAI Completion Type must be provided.')
if credentials['completion_type'] == 'chat_completion':
model = EnhanceChatOpenAI(
model_name=model_name,
openai_api_key='1',
openai_api_base=credentials['server_url'] + '/v1',
max_tokens=10,
request_timeout=60,
)
model([HumanMessage(content='ping')])
else:
model = EnhanceOpenAI(
model_name=model_name,
openai_api_key='1',
openai_api_base=credentials['server_url'] + '/v1',
max_tokens=10,
request_timeout=60,
)
model('ping')
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
@classmethod
def encrypt_model_credentials(cls, tenant_id: str, model_name: str, model_type: ModelType,
credentials: dict) -> dict:
"""
encrypt model credentials for save.
:param tenant_id:
:param model_name:
:param model_type:
:param credentials:
:return:
"""
credentials['server_url'] = encrypter.encrypt_token(tenant_id, credentials['server_url'])
return credentials
def get_model_credentials(self, model_name: str, model_type: ModelType, obfuscated: bool = False) -> dict:
"""
get credentials for llm use.
:param model_name:
:param model_type:
:param obfuscated:
:return:
"""
if self.provider.provider_type != ProviderType.CUSTOM.value:
raise NotImplementedError
provider_model = self._get_provider_model(model_name, model_type)
if not provider_model.encrypted_config:
return {
'server_url': None,
}
credentials = json.loads(provider_model.encrypted_config)
if credentials['server_url']:
credentials['server_url'] = encrypter.decrypt_token(
self.provider.tenant_id,
credentials['server_url']
)
if obfuscated:
credentials['server_url'] = encrypter.obfuscated_token(credentials['server_url'])
return credentials
@classmethod
def is_provider_credentials_valid_or_raise(cls, credentials: dict):
return
@classmethod
def encrypt_provider_credentials(cls, tenant_id: str, credentials: dict) -> dict:
return {}
def get_provider_credentials(self, obfuscated: bool = False) -> dict:
return {}

View File

@@ -1,14 +1,13 @@
import json
from typing import Type
from langchain.llms import OpenLLM
from core.helper import encrypter
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType
from core.model_providers.models.llm.openllm_model import OpenLLMModel
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
from core.model_providers.models.base import BaseProviderModel
from core.third_party.langchain.llms.openllm import OpenLLM
from models.provider import ProviderType
@@ -46,11 +45,11 @@ class OpenLLMProvider(BaseModelProvider):
:return:
"""
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=2, default=1),
temperature=KwargRule[float](min=0.01, max=2, default=1),
top_p=KwargRule[float](min=0, max=1, default=0.7),
presence_penalty=KwargRule[float](min=-2, max=2, default=0),
frequency_penalty=KwargRule[float](min=-2, max=2, default=0),
max_tokens=KwargRule[int](min=10, max=4000, default=128),
max_tokens=KwargRule[int](alias='max_new_tokens', min=10, max=4000, default=128),
)
@classmethod
@@ -71,7 +70,9 @@ class OpenLLMProvider(BaseModelProvider):
}
llm = OpenLLM(
max_tokens=10,
llm_kwargs={
'max_new_tokens': 10
},
**credential_kwargs
)

View File

@@ -1,7 +1,7 @@
import json
from typing import Type
from langchain.llms import Xinference
import requests
from core.helper import encrypter
from core.model_providers.models.embedding.xinference_embedding import XinferenceEmbedding
@@ -10,6 +10,7 @@ from core.model_providers.models.llm.xinference_model import XinferenceModel
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
from core.model_providers.models.base import BaseProviderModel
from core.third_party.langchain.llms.xinference_llm import XinferenceLLM
from models.provider import ProviderType
@@ -48,13 +49,32 @@ class XinferenceProvider(BaseModelProvider):
:param model_type:
:return:
"""
return ModelKwargsRules(
temperature=KwargRule[float](min=0, max=2, default=1),
top_p=KwargRule[float](min=0, max=1, default=0.7),
presence_penalty=KwargRule[float](min=-2, max=2, default=0),
frequency_penalty=KwargRule[float](min=-2, max=2, default=0),
max_tokens=KwargRule[int](min=10, max=4000, default=256),
)
credentials = self.get_model_credentials(model_name, model_type)
if credentials['model_format'] == "ggmlv3" and credentials["model_handle_type"] == "chatglm":
return ModelKwargsRules(
temperature=KwargRule[float](min=0.01, max=2, default=1),
top_p=KwargRule[float](min=0, max=1, default=0.7),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](min=10, max=4000, default=256),
)
elif credentials['model_format'] == "ggmlv3":
return ModelKwargsRules(
temperature=KwargRule[float](min=0.01, max=2, default=1),
top_p=KwargRule[float](min=0, max=1, default=0.7),
presence_penalty=KwargRule[float](min=-2, max=2, default=0),
frequency_penalty=KwargRule[float](min=-2, max=2, default=0),
max_tokens=KwargRule[int](min=10, max=4000, default=256),
)
else:
return ModelKwargsRules(
temperature=KwargRule[float](min=0.01, max=2, default=1),
top_p=KwargRule[float](min=0, max=1, default=0.7),
presence_penalty=KwargRule[float](enabled=False),
frequency_penalty=KwargRule[float](enabled=False),
max_tokens=KwargRule[int](min=10, max=4000, default=256),
)
@classmethod
def is_model_credentials_valid_or_raise(cls, model_name: str, model_type: ModelType, credentials: dict):
@@ -77,11 +97,11 @@ class XinferenceProvider(BaseModelProvider):
'model_uid': credentials['model_uid'],
}
llm = Xinference(
llm = XinferenceLLM(
**credential_kwargs
)
llm("ping", generate_config={'max_tokens': 10})
llm("ping")
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
@@ -97,7 +117,11 @@ class XinferenceProvider(BaseModelProvider):
:param credentials:
:return:
"""
extra_credentials = cls._get_extra_credentials(credentials)
credentials.update(extra_credentials)
credentials['server_url'] = encrypter.encrypt_token(tenant_id, credentials['server_url'])
return credentials
def get_model_credentials(self, model_name: str, model_type: ModelType, obfuscated: bool = False) -> dict:
@@ -132,6 +156,30 @@ class XinferenceProvider(BaseModelProvider):
return credentials
@classmethod
def _get_extra_credentials(self, credentials: dict) -> dict:
url = f"{credentials['server_url']}/v1/models/{credentials['model_uid']}"
response = requests.get(url)
if response.status_code != 200:
raise RuntimeError(
f"Failed to get the model description, detail: {response.json()['detail']}"
)
desc = response.json()
extra_credentials = {
'model_format': desc['model_format'],
}
if desc["model_format"] == "ggmlv3" and "chatglm" in desc["model_name"]:
extra_credentials['model_handle_type'] = 'chatglm'
elif "generate" in desc["model_ability"]:
extra_credentials['model_handle_type'] = 'generate'
elif "chat" in desc["model_ability"]:
extra_credentials['model_handle_type'] = 'chat'
else:
raise NotImplementedError(f"Model handle type not supported.")
return extra_credentials
@classmethod
def is_provider_credentials_valid_or_raise(cls, credentials: dict):
return

View File

@@ -10,5 +10,6 @@
"replicate",
"huggingface_hub",
"xinference",
"openllm"
"openllm",
"localai"
]

View File

@@ -0,0 +1,7 @@
{
"support_provider_types": [
"custom"
],
"system_config": null,
"model_flexibility": "configurable"
}

View File

@@ -0,0 +1,13 @@
{
"human_prefix": "用户",
"assistant_prefix": "助手",
"context_prompt": "用户在与一个客观的助手对话。助手会尊重找到的材料,给出全面专业的解释,但不会过度演绎。同时回答中不会暴露引用的材料:\n\n```\n{{context}}\n```\n\n",
"histories_prompt": "用户和助手的历史对话内容如下:\n```\n{{histories}}\n```\n\n",
"system_prompt_orders": [
"context_prompt",
"pre_prompt",
"histories_prompt"
],
"query_prompt": "用户:{{query}}",
"stops": ["用户:"]
}

View File

@@ -0,0 +1,9 @@
{
"context_prompt": "用户在与一个客观的助手对话。助手会尊重找到的材料,给出全面专业的解释,但不会过度演绎。同时回答中不会暴露引用的材料:\n\n```\n{{context}}\n```\n",
"system_prompt_orders": [
"context_prompt",
"pre_prompt"
],
"query_prompt": "{{query}}",
"stops": null
}

View File

@@ -0,0 +1,13 @@
{
"human_prefix": "Human",
"assistant_prefix": "Assistant",
"context_prompt": "Use the following context as your learned knowledge, inside <context></context> XML tags.\n\n<context>\n{{context}}\n</context>\n\nWhen answer to user:\n- If you don't know, just say that you don't know.\n- If you don't know when you are not sure, ask for clarification.\nAvoid mentioning that you obtained the information from the context.\nAnd answer according to the language of the user's question.\n\n",
"histories_prompt": "Here is the chat histories between human and assistant, inside <histories></histories> XML tags.\n\n<histories>\n{{histories}}\n</histories>\n\n",
"system_prompt_orders": [
"context_prompt",
"pre_prompt",
"histories_prompt"
],
"query_prompt": "Human: {{query}}\n\nAssistant: ",
"stops": ["\nHuman:", "</histories>"]
}

View File

@@ -0,0 +1,9 @@
{
"context_prompt": "Use the following context as your learned knowledge, inside <context></context> XML tags.\n\n<context>\n{{context}}\n</context>\n\nWhen answer to user:\n- If you don't know, just say that you don't know.\n- If you don't know when you are not sure, ask for clarification.\nAvoid mentioning that you obtained the information from the context.\nAnd answer according to the language of the user's question.\n\n",
"system_prompt_orders": [
"context_prompt",
"pre_prompt"
],
"query_prompt": "{{query}}",
"stops": null
}

View File

@@ -0,0 +1,21 @@
from typing import List
import numpy as np
from langchain.embeddings import XinferenceEmbeddings
class XinferenceEmbedding(XinferenceEmbeddings):
def embed_documents(self, texts: List[str]) -> List[List[float]]:
vectors = super().embed_documents(texts)
normalized_vectors = [(vector / np.linalg.norm(vector)).tolist() for vector in vectors]
return normalized_vectors
def embed_query(self, text: str) -> List[float]:
vector = super().embed_query(text)
normalized_vector = (vector / np.linalg.norm(vector)).tolist()
return normalized_vector

View File

@@ -42,7 +42,8 @@ class EnhanceChatOpenAI(ChatOpenAI):
return {
**super()._default_params,
"api_type": 'openai',
"api_base": os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1"),
"api_base": self.openai_api_base if self.openai_api_base
else os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1"),
"api_version": None,
"api_key": self.openai_api_key,
"organization": self.openai_organization if self.openai_organization else None,

View File

@@ -0,0 +1,128 @@
from typing import Dict, Any, Optional, List, Iterable, Iterator
from huggingface_hub import InferenceClient
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.embeddings.huggingface_hub import VALID_TASKS
from langchain.llms import HuggingFaceEndpoint
from langchain.llms.utils import enforce_stop_tokens
from pydantic import root_validator
from langchain.utils import get_from_dict_or_env
class HuggingFaceEndpointLLM(HuggingFaceEndpoint):
"""HuggingFace Endpoint models.
To use, you should have the ``huggingface_hub`` python package installed, and the
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
Only supports `text-generation` and `text2text-generation` for now.
Example:
.. code-block:: python
from langchain.llms import HuggingFaceEndpoint
endpoint_url = (
"https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud"
)
hf = HuggingFaceEndpoint(
endpoint_url=endpoint_url,
huggingfacehub_api_token="my-api-key"
)
"""
client: Any
streaming: bool = False
@root_validator(allow_reuse=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
huggingfacehub_api_token = get_from_dict_or_env(
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
)
values['client'] = InferenceClient(values['endpoint_url'], token=huggingfacehub_api_token)
values["huggingfacehub_api_token"] = huggingfacehub_api_token
return values
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to HuggingFace Hub's inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = hf("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
# payload samples
params = {**_model_kwargs, **kwargs}
# generation parameter
gen_kwargs = {
**params,
'stop_sequences': stop
}
response = self.client.text_generation(prompt, stream=self.streaming, details=True, **gen_kwargs)
if self.streaming and isinstance(response, Iterable):
combined_text_output = ""
for token in self._stream_response(response, run_manager):
combined_text_output += token
completion = combined_text_output
else:
completion = response.generated_text
if self.task == "text-generation":
text = completion
# Remove prompt if included in generated text.
if text.startswith(prompt):
text = text[len(prompt) :]
elif self.task == "text2text-generation":
text = completion
else:
raise ValueError(
f"Got invalid task {self.task}, "
f"currently only {VALID_TASKS} are supported"
)
if stop is not None:
# This is a bit hacky, but I can't figure out a better way to enforce
# stop tokens when making calls to huggingface_hub.
text = enforce_stop_tokens(text, stop)
return text
def _stream_response(
self,
response: Iterable,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> Iterator[str]:
for r in response:
# skip special tokens
if r.token.special:
continue
token = r.token.text
if run_manager:
run_manager.on_llm_new_token(
token=token, verbose=self.verbose, log_probs=None
)
# yield the generated token
yield token

View File

@@ -1,7 +1,10 @@
import os
from typing import Dict, Any, Mapping, Optional, Union, Tuple
from typing import Dict, Any, Mapping, Optional, Union, Tuple, List, Iterator
from langchain import OpenAI
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.openai import completion_with_retry, _stream_response_to_generation_chunk
from langchain.schema.output import GenerationChunk
from pydantic import root_validator
@@ -33,7 +36,8 @@ class EnhanceOpenAI(OpenAI):
def _invocation_params(self) -> Dict[str, Any]:
return {**super()._invocation_params, **{
"api_type": 'openai',
"api_base": os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1"),
"api_base": self.openai_api_base if self.openai_api_base
else os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1"),
"api_version": None,
"api_key": self.openai_api_key,
"organization": self.openai_organization if self.openai_organization else None,
@@ -43,8 +47,33 @@ class EnhanceOpenAI(OpenAI):
def _identifying_params(self) -> Mapping[str, Any]:
return {**super()._identifying_params, **{
"api_type": 'openai',
"api_base": os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1"),
"api_base": self.openai_api_base if self.openai_api_base
else os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1"),
"api_version": None,
"api_key": self.openai_api_key,
"organization": self.openai_organization if self.openai_organization else None,
}}
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
params = {**self._invocation_params, **kwargs, "stream": True}
self.get_sub_prompts(params, [prompt], stop) # this mutates params
for stream_resp in completion_with_retry(
self, prompt=prompt, run_manager=run_manager, **params
):
if 'text' in stream_resp["choices"][0]:
chunk = _stream_response_to_generation_chunk(stream_resp)
yield chunk
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
verbose=self.verbose,
logprobs=chunk.generation_info["logprobs"]
if chunk.generation_info
else None,
)

View File

@@ -0,0 +1,84 @@
from __future__ import annotations
import logging
from typing import (
Any,
Dict,
List,
Optional,
)
import requests
from langchain.llms.utils import enforce_stop_tokens
from pydantic import Field
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.llms.base import LLM
logger = logging.getLogger(__name__)
class OpenLLM(LLM):
"""OpenLLM, supporting both in-process model
instance and remote OpenLLM servers.
If you have a OpenLLM server running, you can also use it remotely:
.. code-block:: python
from langchain.llms import OpenLLM
llm = OpenLLM(server_url='http://localhost:3000')
llm("What is the difference between a duck and a goose?")
"""
server_url: Optional[str] = None
"""Optional server URL that currently runs a LLMServer with 'openllm start'."""
llm_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Key word arguments to be passed to openllm.LLM"""
@property
def _llm_type(self) -> str:
return "openllm"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: CallbackManagerForLLMRun | None = None,
**kwargs: Any,
) -> str:
params = {
"prompt": prompt,
"llm_config": self.llm_kwargs
}
headers = {"Content-Type": "application/json"}
response = requests.post(
f'{self.server_url}/v1/generate',
headers=headers,
json=params
)
if not response.ok:
raise ValueError(f"OpenLLM HTTP {response.status_code} error: {response.text}")
json_response = response.json()
completion = json_response["responses"][0]
if stop is not None:
completion = enforce_stop_tokens(completion, stop)
return completion
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
raise NotImplementedError(
"Async call is not supported for OpenLLM at the moment."
)

View File

@@ -0,0 +1,159 @@
from typing import Optional, List, Any, Union, Generator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms import Xinference
from langchain.llms.utils import enforce_stop_tokens
from xinference.client import (
RESTfulChatglmCppChatModelHandle,
RESTfulChatModelHandle,
RESTfulGenerateModelHandle,
)
class XinferenceLLM(Xinference):
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call the xinference model and return the output.
Args:
prompt: The prompt to use for generation.
stop: Optional list of stop words to use when generating.
generate_config: Optional dictionary for the configuration used for
generation.
Returns:
The generated string by the model.
"""
model = self.client.get_model(self.model_uid)
if isinstance(model, RESTfulChatModelHandle):
generate_config: "LlamaCppGenerateConfig" = kwargs.get(
"generate_config", {}
)
if stop:
generate_config["stop"] = stop
if generate_config and generate_config.get("stream"):
combined_text_output = ""
for token in self._stream_generate(
model=model,
prompt=prompt,
run_manager=run_manager,
generate_config=generate_config,
):
combined_text_output += token
return combined_text_output
else:
completion = model.chat(prompt=prompt, generate_config=generate_config)
return completion["choices"][0]["message"]["content"]
elif isinstance(model, RESTfulGenerateModelHandle):
generate_config: "LlamaCppGenerateConfig" = kwargs.get(
"generate_config", {}
)
if stop:
generate_config["stop"] = stop
if generate_config and generate_config.get("stream"):
combined_text_output = ""
for token in self._stream_generate(
model=model,
prompt=prompt,
run_manager=run_manager,
generate_config=generate_config,
):
combined_text_output += token
return combined_text_output
else:
completion = model.generate(
prompt=prompt, generate_config=generate_config
)
return completion["choices"][0]["text"]
elif isinstance(model, RESTfulChatglmCppChatModelHandle):
generate_config: "ChatglmCppGenerateConfig" = kwargs.get(
"generate_config", {}
)
if generate_config and generate_config.get("stream"):
combined_text_output = ""
for token in self._stream_generate(
model=model,
prompt=prompt,
run_manager=run_manager,
generate_config=generate_config,
):
combined_text_output += token
completion = combined_text_output
else:
completion = model.chat(prompt=prompt, generate_config=generate_config)
completion = completion["choices"][0]["message"]["content"]
if stop is not None:
completion = enforce_stop_tokens(completion, stop)
return completion
def _stream_generate(
self,
model: Union[
"RESTfulGenerateModelHandle",
"RESTfulChatModelHandle",
"RESTfulChatglmCppChatModelHandle",
],
prompt: str,
run_manager: Optional[CallbackManagerForLLMRun] = None,
generate_config: Optional[
Union[
"LlamaCppGenerateConfig",
"PytorchGenerateConfig",
"ChatglmCppGenerateConfig",
]
] = None,
) -> Generator[str, None, None]:
"""
Args:
prompt: The prompt to use for generation.
model: The model used for generation.
stop: Optional list of stop words to use when generating.
generate_config: Optional dictionary for the configuration used for
generation.
Yields:
A string token.
"""
if isinstance(
model, (RESTfulChatModelHandle, RESTfulChatglmCppChatModelHandle)
):
streaming_response = model.chat(
prompt=prompt, generate_config=generate_config
)
else:
streaming_response = model.generate(
prompt=prompt, generate_config=generate_config
)
for chunk in streaming_response:
if isinstance(chunk, dict):
choices = chunk.get("choices", [])
if choices:
choice = choices[0]
if isinstance(choice, dict):
if "text" in choice:
token = choice.get("text", "")
elif "delta" in choice and "content" in choice["delta"]:
token = choice.get("delta").get("content")
else:
continue
log_probs = choice.get("logprobs")
if run_manager:
run_manager.on_llm_new_token(
token=token, verbose=self.verbose, log_probs=log_probs
)
yield token

View File

@@ -1,4 +1,3 @@
import re
from typing import Type
from flask import current_app
@@ -16,7 +15,6 @@ from models.dataset import Dataset, DocumentSegment
class DatasetRetrieverToolInput(BaseModel):
dataset_id: str = Field(..., description="ID of dataset to be queried. MUST be UUID format.")
query: str = Field(..., description="Query for the dataset to be used to retrieve the dataset.")
@@ -37,27 +35,22 @@ class DatasetRetrieverTool(BaseTool):
description = 'useful for when you want to answer queries about the ' + dataset.name
description = description.replace('\n', '').replace('\r', '')
description += '\nID of dataset MUST be ' + dataset.id
return cls(
name=f'dataset-{dataset.id}',
tenant_id=dataset.tenant_id,
dataset_id=dataset.id,
description=description,
**kwargs
)
def _run(self, dataset_id: str, query: str) -> str:
pattern = r'\b[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}\b'
match = re.search(pattern, dataset_id, re.IGNORECASE)
if match:
dataset_id = match.group()
def _run(self, query: str) -> str:
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == self.tenant_id,
Dataset.id == dataset_id
Dataset.id == self.dataset_id
).first()
if not dataset:
return f'[{self.name} failed to find dataset with id {dataset_id}.]'
return f'[{self.name} failed to find dataset with id {self.dataset_id}.]'
if dataset.indexing_technique == "economy":
# use keyword table query

View File

@@ -88,6 +88,11 @@ class WebReaderTool(BaseTool):
texts = character_splitter.split_text(page_contents)
docs = [Document(page_content=t) for t in texts]
if len(docs) == 0:
return "No content found."
docs = docs[1:]
# only use first 5 docs
if len(docs) > 5:
docs = docs[:5]

View File

@@ -0,0 +1,38 @@
from langchain.vectorstores import Milvus
class MilvusVectorStore(Milvus):
def del_texts(self, where_filter: dict):
if not where_filter:
raise ValueError('where_filter must not be empty')
self._client.batch.delete_objects(
class_name=self._index_name,
where=where_filter,
output='minimal'
)
def del_text(self, uuid: str) -> None:
self._client.data_object.delete(
uuid,
class_name=self._index_name
)
def text_exists(self, uuid: str) -> bool:
result = self._client.query.get(self._index_name).with_additional(["id"]).with_where({
"path": ["doc_id"],
"operator": "Equal",
"valueText": uuid,
}).with_limit(1).do()
if "errors" in result:
raise ValueError(f"Error during query: {result['errors']}")
entries = result["data"]["Get"][self._index_name]
if len(entries) == 0:
return False
return True
def delete(self):
self._client.schema.delete_class(self._index_name)

View File

@@ -1,10 +1,11 @@
from typing import cast, Any
from langchain.schema import Document
from langchain.vectorstores import Qdrant
from qdrant_client.http.models import Filter, PointIdsList, FilterSelector
from qdrant_client.local.qdrant_local import QdrantLocal
from core.index.vector_index.qdrant import Qdrant
class QdrantVectorStore(Qdrant):
def del_texts(self, filter: Filter):

View File

@@ -1,6 +1,5 @@
from events.dataset_event import dataset_was_deleted
from events.event_handlers.document_index_event import document_index_created
from tasks.clean_dataset_task import clean_dataset_task
import datetime
import logging
import time

View File

@@ -0,0 +1,46 @@
"""update_dataset_model_field_null_available
Revision ID: 4bcffcd64aa4
Revises: 853f9b9cd3b6
Create Date: 2023-08-28 20:58:50.077056
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '4bcffcd64aa4'
down_revision = '853f9b9cd3b6'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('datasets', schema=None) as batch_op:
batch_op.alter_column('embedding_model',
existing_type=sa.VARCHAR(length=255),
nullable=True,
existing_server_default=sa.text("'text-embedding-ada-002'::character varying"))
batch_op.alter_column('embedding_model_provider',
existing_type=sa.VARCHAR(length=255),
nullable=True,
existing_server_default=sa.text("'openai'::character varying"))
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('datasets', schema=None) as batch_op:
batch_op.alter_column('embedding_model_provider',
existing_type=sa.VARCHAR(length=255),
nullable=False,
existing_server_default=sa.text("'openai'::character varying"))
batch_op.alter_column('embedding_model',
existing_type=sa.VARCHAR(length=255),
nullable=False,
existing_server_default=sa.text("'text-embedding-ada-002'::character varying"))
# ### end Alembic commands ###

View File

@@ -36,10 +36,8 @@ class Dataset(db.Model):
updated_by = db.Column(UUID, nullable=True)
updated_at = db.Column(db.DateTime, nullable=False,
server_default=db.text('CURRENT_TIMESTAMP(0)'))
embedding_model = db.Column(db.String(
255), nullable=False, server_default=db.text("'text-embedding-ada-002'::character varying"))
embedding_model_provider = db.Column(db.String(
255), nullable=False, server_default=db.text("'openai'::character varying"))
embedding_model = db.Column(db.String(255), nullable=True)
embedding_model_provider = db.Column(db.String(255), nullable=True)
@property
def dataset_keyword_table(self):

View File

@@ -49,5 +49,5 @@ huggingface_hub~=0.16.4
transformers~=4.31.0
stripe~=5.5.0
pandas==1.5.3
xinference==0.2.0
openllm~=0.2.26
xinference==0.2.1
safetensors==0.3.2

View File

@@ -10,6 +10,7 @@ from flask import current_app
from sqlalchemy import func
from core.index.index import IndexBuilder
from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_providers.model_factory import ModelFactory
from extensions.ext_redis import redis_client
from flask_login import current_user
@@ -91,16 +92,18 @@ class DatasetService:
if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
raise DatasetNameDuplicateError(
f'Dataset with name {name} already exists.')
embedding_model = ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
embedding_model = None
if indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
dataset = Dataset(name=name, indexing_technique=indexing_technique)
# dataset = Dataset(name=name, provider=provider, config=config)
dataset.created_by = account.id
dataset.updated_by = account.id
dataset.tenant_id = tenant_id
dataset.embedding_model_provider = embedding_model.model_provider.provider_name
dataset.embedding_model = embedding_model.name
dataset.embedding_model_provider = embedding_model.model_provider.provider_name if embedding_model else None
dataset.embedding_model = embedding_model.name if embedding_model else None
db.session.add(dataset)
db.session.commit()
return dataset
@@ -115,17 +118,50 @@ class DatasetService:
else:
return dataset
@staticmethod
def check_dataset_model_setting(dataset):
if dataset.indexing_technique == 'high_quality':
try:
ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ValueError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ValueError(f"The dataset in unavailable, due to: "
f"{ex.description}")
@staticmethod
def update_dataset(dataset_id, data, user):
filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
dataset = DatasetService.get_dataset(dataset_id)
DatasetService.check_dataset_permission(dataset, user)
action = None
if dataset.indexing_technique != data['indexing_technique']:
# if update indexing_technique
if data['indexing_technique'] == 'economy':
deal_dataset_vector_index_task.delay(dataset_id, 'remove')
action = 'remove'
filtered_data['embedding_model'] = None
filtered_data['embedding_model_provider'] = None
elif data['indexing_technique'] == 'high_quality':
deal_dataset_vector_index_task.delay(dataset_id, 'add')
filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
action = 'add'
# get embedding model setting
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
filtered_data['embedding_model'] = embedding_model.name
filtered_data['embedding_model_provider'] = embedding_model.model_provider.provider_name
except LLMBadRequestError:
raise ValueError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
filtered_data['updated_by'] = user.id
filtered_data['updated_at'] = datetime.datetime.now()
@@ -133,7 +169,8 @@ class DatasetService:
dataset.query.filter_by(id=dataset_id).update(filtered_data)
db.session.commit()
if action:
deal_dataset_vector_index_task.delay(dataset_id, action)
return dataset
@staticmethod
@@ -284,8 +321,9 @@ class DocumentService:
"github_link": str,
"open_source_license": str,
"commit_date": str,
"commit_author": str
}
"commit_author": str,
},
"others": dict
}
@staticmethod
@@ -393,16 +431,26 @@ class DocumentService:
def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
created_from: str = 'web'):
# check document limit
if current_app.config['EDITION'] == 'CLOUD':
documents_count = DocumentService.get_tenant_documents_count()
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
if documents_count > tenant_document_count:
raise ValueError(f"over document limit {tenant_document_count}.")
if 'original_document_id' not in document_data or not document_data['original_document_id']:
count = 0
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
count = len(upload_file_list)
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
for notion_info in notion_info_list:
count = count + len(notion_info['pages'])
documents_count = DocumentService.get_tenant_documents_count()
total_count = documents_count + count
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
if total_count > tenant_document_count:
raise ValueError(f"over document limit {tenant_document_count}.")
# if dataset is empty, update dataset data_source_type
if not dataset.data_source_type:
dataset.data_source_type = document_data["data_source"]["type"]
db.session.commit()
if not dataset.indexing_technique:
if 'indexing_technique' not in document_data \
@@ -410,6 +458,13 @@ class DocumentService:
raise ValueError("Indexing technique is required")
dataset.indexing_technique = document_data["indexing_technique"]
if document_data["indexing_technique"] == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id
)
dataset.embedding_model = embedding_model.name
dataset.embedding_model_provider = embedding_model.model_provider.provider_name
documents = []
batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
@@ -454,12 +509,12 @@ class DocumentService:
data_source_info = {
"upload_file_id": file_id,
}
document = DocumentService.save_document(dataset, dataset_process_rule.id,
document_data["data_source"]["type"],
document_data["doc_form"],
document_data["doc_language"],
data_source_info, created_from, position,
account, file_name, batch)
document = DocumentService.build_document(dataset, dataset_process_rule.id,
document_data["data_source"]["type"],
document_data["doc_form"],
document_data["doc_language"],
data_source_info, created_from, position,
account, file_name, batch)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
@@ -500,12 +555,12 @@ class DocumentService:
"notion_page_icon": page['page_icon'],
"type": page['type']
}
document = DocumentService.save_document(dataset, dataset_process_rule.id,
document_data["data_source"]["type"],
document_data["doc_form"],
document_data["doc_language"],
data_source_info, created_from, position,
account, page['page_name'], batch)
document = DocumentService.build_document(dataset, dataset_process_rule.id,
document_data["data_source"]["type"],
document_data["doc_form"],
document_data["doc_language"],
data_source_info, created_from, position,
account, page['page_name'], batch)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
@@ -524,10 +579,10 @@ class DocumentService:
return documents, batch
@staticmethod
def save_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
document_language: str, data_source_info: dict, created_from: str, position: int,
account: Account,
name: str, batch: str):
def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
document_language: str, data_source_info: dict, created_from: str, position: int,
account: Account,
name: str, batch: str):
document = Document(
tenant_id=dataset.tenant_id,
dataset_id=dataset.id,
@@ -556,6 +611,7 @@ class DocumentService:
def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
created_from: str = 'web'):
DatasetService.check_dataset_model_setting(dataset)
document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
if document.display_status != 'available':
raise ValueError("Document is not available")
@@ -648,15 +704,26 @@ class DocumentService:
@staticmethod
def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
count = 0
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
count = len(upload_file_list)
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
for notion_info in notion_info_list:
count = count + len(notion_info['pages'])
# check document limit
if current_app.config['EDITION'] == 'CLOUD':
documents_count = DocumentService.get_tenant_documents_count()
total_count = documents_count + count
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
if documents_count > tenant_document_count:
raise ValueError(f"over document limit {tenant_document_count}.")
embedding_model = ModelFactory.get_embedding_model(
tenant_id=tenant_id
)
if total_count > tenant_document_count:
raise ValueError(f"All your documents have overed limit {tenant_document_count}.")
embedding_model = None
if document_data['indexing_technique'] == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=tenant_id
)
# save dataset
dataset = Dataset(
tenant_id=tenant_id,
@@ -664,8 +731,8 @@ class DocumentService:
data_source_type=document_data["data_source"]["type"],
indexing_technique=document_data["indexing_technique"],
created_by=account.id,
embedding_model=embedding_model.name,
embedding_model_provider=embedding_model.model_provider.provider_name
embedding_model=embedding_model.name if embedding_model else None,
embedding_model_provider=embedding_model.model_provider.provider_name if embedding_model else None
)
db.session.add(dataset)
@@ -873,21 +940,25 @@ class SegmentService:
if document.doc_form == 'qa_model':
if 'answer' not in args or not args['answer']:
raise ValueError("Answer is required")
if not args['answer'].strip():
raise ValueError("Answer is empty")
if 'content' not in args or not args['content'] or not args['content'].strip():
raise ValueError("Content is empty")
@classmethod
def create_segment(cls, args: dict, document: Document, dataset: Dataset):
content = args['content']
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
# calc embedding use tokens
tokens = embedding_model.get_num_tokens(content)
tokens = 0
if dataset.indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
# calc embedding use tokens
tokens = embedding_model.get_num_tokens(content)
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == document.id
).scalar()
@@ -949,15 +1020,16 @@ class SegmentService:
kw_index.update_segment_keywords_index(segment.index_node_id, segment.keywords)
else:
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
# calc embedding use tokens
tokens = embedding_model.get_num_tokens(content)
# calc embedding use tokens
tokens = embedding_model.get_num_tokens(content)
segment.content = content
segment.index_node_hash = segment_hash
segment.word_count = len(content)
@@ -972,7 +1044,7 @@ class SegmentService:
db.session.add(segment)
db.session.commit()
# update segment vector index
VectorService.create_segment_vector(args['keywords'], segment, dataset)
VectorService.update_segment_vector(args['keywords'], segment, dataset)
except Exception as e:
logging.exception("update segment index failed")
segment.enabled = False
@@ -989,10 +1061,11 @@ class SegmentService:
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
raise ValueError("Segment is deleting.")
# send delete segment index task
redis_client.setex(indexing_cache_key, 600, 1)
# enabled segment need to delete index
if segment.enabled:
# send delete segment index task
redis_client.setex(indexing_cache_key, 600, 1)
delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
db.session.delete(segment)
db.session.commit()

View File

@@ -19,7 +19,7 @@ from models.dataset import Dataset, DocumentSegment, DatasetQuery
class HitTestingService:
@classmethod
def retrieve(cls, dataset: Dataset, query: str, account: Account, limit: int = 10) -> dict:
if dataset.available_document_count == 0 or dataset.available_document_count == 0:
if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
return {
"query": {
"content": query,

View File

@@ -49,18 +49,20 @@ def batch_create_segment_to_index_task(job_id: str, content: List, dataset_id: s
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
raise ValueError('Document is not available.')
document_segments = []
for segment in content:
content = segment['content']
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
embedding_model = None
if dataset.indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
for segment in content:
content = segment['content']
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
# calc embedding use tokens
tokens = embedding_model.get_num_tokens(content)
tokens = embedding_model.get_num_tokens(content) if embedding_model else 0
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == dataset_document.id
).scalar()

View File

@@ -3,8 +3,10 @@ import time
import click
from celery import shared_task
from flask import current_app
from core.index.index import IndexBuilder
from core.index.vector_index.vector_index import VectorIndex
from extensions.ext_database import db
from models.dataset import DocumentSegment, Dataset, DatasetKeywordTable, DatasetQuery, DatasetProcessRule, \
AppDatasetJoin, Document
@@ -35,11 +37,11 @@ def clean_dataset_task(dataset_id: str, tenant_id: str, indexing_technique: str,
documents = db.session.query(Document).filter(Document.dataset_id == dataset_id).all()
segments = db.session.query(DocumentSegment).filter(DocumentSegment.dataset_id == dataset_id).all()
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
kw_index = IndexBuilder.get_index(dataset, 'economy')
# delete from vector index
if vector_index:
if dataset.indexing_technique == 'high_quality':
vector_index = IndexBuilder.get_default_high_quality_index(dataset)
try:
vector_index.delete()
except Exception:

View File

@@ -31,7 +31,7 @@ def deal_dataset_vector_index_task(dataset_id: str, action: str):
raise Exception('Dataset not found')
if action == "remove":
index = IndexBuilder.get_index(dataset, 'high_quality', ignore_high_quality_check=True)
index = IndexBuilder.get_index(dataset, 'high_quality', ignore_high_quality_check=False)
index.delete()
elif action == "add":
dataset_documents = db.session.query(DatasetDocument).filter(
@@ -43,7 +43,7 @@ def deal_dataset_vector_index_task(dataset_id: str, action: str):
if dataset_documents:
# save vector index
index = IndexBuilder.get_index(dataset, 'high_quality', ignore_high_quality_check=True)
index = IndexBuilder.get_index(dataset, 'high_quality', ignore_high_quality_check=False)
documents = []
for dataset_document in dataset_documents:
# delete from vector index
@@ -65,7 +65,7 @@ def deal_dataset_vector_index_task(dataset_id: str, action: str):
documents.append(document)
# save vector index
index.add_texts(documents)
index.create(documents)
end_at = time.perf_counter()
logging.info(

View File

@@ -39,4 +39,7 @@ XINFERENCE_SERVER_URL=
XINFERENCE_MODEL_UID=
# OpenLLM Credentials
OPENLLM_SERVER_URL=
OPENLLM_SERVER_URL=
# LocalAI Credentials
LOCALAI_SERVER_URL=

View File

@@ -0,0 +1,61 @@
import json
import os
from unittest.mock import patch, MagicMock
from core.model_providers.models.embedding.localai_embedding import LocalAIEmbedding
from core.model_providers.models.entity.model_params import ModelType
from core.model_providers.providers.localai_provider import LocalAIProvider
from models.provider import Provider, ProviderType, ProviderModel
def get_mock_provider():
return Provider(
id='provider_id',
tenant_id='tenant_id',
provider_name='localai',
provider_type=ProviderType.CUSTOM.value,
encrypted_config='',
is_valid=True,
)
def get_mock_embedding_model(mocker):
model_name = 'text-embedding-ada-002'
server_url = os.environ['LOCALAI_SERVER_URL']
model_provider = LocalAIProvider(provider=get_mock_provider())
mock_query = MagicMock()
mock_query.filter.return_value.first.return_value = ProviderModel(
provider_name='localai',
model_name=model_name,
model_type=ModelType.EMBEDDINGS.value,
encrypted_config=json.dumps({
'server_url': server_url,
}),
is_valid=True,
)
mocker.patch('extensions.ext_database.db.session.query', return_value=mock_query)
return LocalAIEmbedding(
model_provider=model_provider,
name=model_name
)
def decrypt_side_effect(tenant_id, encrypted_api_key):
return encrypted_api_key
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
def test_embed_documents(mock_decrypt, mocker):
embedding_model = get_mock_embedding_model(mocker)
rst = embedding_model.client.embed_documents(['test', 'test1'])
assert isinstance(rst, list)
assert len(rst) == 2
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
def test_embed_query(mock_decrypt, mocker):
embedding_model = get_mock_embedding_model(mocker)
rst = embedding_model.client.embed_query('test')
assert isinstance(rst, list)

View File

@@ -0,0 +1,68 @@
import json
import os
from unittest.mock import patch, MagicMock
from core.model_providers.models.llm.localai_model import LocalAIModel
from core.model_providers.providers.localai_provider import LocalAIProvider
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.model_params import ModelKwargs, ModelType
from models.provider import Provider, ProviderType, ProviderModel
def get_mock_provider(server_url):
return Provider(
id='provider_id',
tenant_id='tenant_id',
provider_name='localai',
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps({}),
is_valid=True,
)
def get_mock_model(model_name, mocker):
model_kwargs = ModelKwargs(
max_tokens=10,
temperature=0
)
server_url = os.environ['LOCALAI_SERVER_URL']
mock_query = MagicMock()
mock_query.filter.return_value.first.return_value = ProviderModel(
provider_name='localai',
model_name=model_name,
model_type=ModelType.TEXT_GENERATION.value,
encrypted_config=json.dumps({'server_url': server_url, 'completion_type': 'completion'}),
is_valid=True,
)
mocker.patch('extensions.ext_database.db.session.query', return_value=mock_query)
openai_provider = LocalAIProvider(provider=get_mock_provider(server_url))
return LocalAIModel(
model_provider=openai_provider,
name=model_name,
model_kwargs=model_kwargs
)
def decrypt_side_effect(tenant_id, encrypted_openai_api_key):
return encrypted_openai_api_key
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
def test_get_num_tokens(mock_decrypt, mocker):
openai_model = get_mock_model('ggml-gpt4all-j', mocker)
rst = openai_model.get_num_tokens([PromptMessage(content='you are a kindness Assistant.')])
assert rst > 0
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
def test_run(mock_decrypt, mocker):
mocker.patch('core.model_providers.providers.base.BaseModelProvider.update_last_used', return_value=None)
openai_model = get_mock_model('ggml-gpt4all-j', mocker)
rst = openai_model.run(
[PromptMessage(content='Human: Are you Human? you MUST only answer `y` or `n`? \nAssistant: ')],
stop=['\nHuman:'],
)
assert len(rst.content) > 0

View File

@@ -17,7 +17,8 @@ HOSTED_INFERENCE_API_VALIDATE_CREDENTIAL = {
INFERENCE_ENDPOINTS_VALIDATE_CREDENTIAL = {
'huggingfacehub_api_type': 'inference_endpoints',
'huggingfacehub_api_token': 'valid_key',
'huggingfacehub_endpoint_url': 'valid_url'
'huggingfacehub_endpoint_url': 'valid_url',
'task_type': 'text-generation'
}
def encrypt_side_effect(tenant_id, encrypt_key):
@@ -62,7 +63,7 @@ def test_hosted_inference_api_is_credentials_valid_or_raise_invalid(mock_model_i
def test_inference_endpoints_is_credentials_valid_or_raise_valid(mocker):
mocker.patch('huggingface_hub.hf_api.HfApi.whoami', return_value=None)
mocker.patch('langchain.llms.huggingface_endpoint.HuggingFaceEndpoint._call', return_value="abc")
mocker.patch('core.third_party.langchain.llms.huggingface_endpoint_llm.HuggingFaceEndpointLLM._call', return_value="abc")
MODEL_PROVIDER_CLASS.is_model_credentials_valid_or_raise(
model_name='test_model_name',
@@ -70,8 +71,10 @@ def test_inference_endpoints_is_credentials_valid_or_raise_valid(mocker):
credentials=INFERENCE_ENDPOINTS_VALIDATE_CREDENTIAL
)
def test_inference_endpoints_is_credentials_valid_or_raise_invalid(mocker):
mocker.patch('huggingface_hub.hf_api.HfApi.whoami', return_value=None)
mocker.patch('core.third_party.langchain.llms.huggingface_endpoint_llm.HuggingFaceEndpointLLM._call', return_value="abc")
with pytest.raises(CredentialsValidateFailedError):
MODEL_PROVIDER_CLASS.is_model_credentials_valid_or_raise(

Some files were not shown because too many files have changed in this diff Show More