mirror of
https://gitee.com/dify_ai/dify.git
synced 2025-12-06 19:42:42 +08:00
Compare commits
6 Commits
feat/versi
...
feat/block
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9156934a05 | ||
|
|
ea866b37f0 | ||
|
|
c476836889 | ||
|
|
2cda79699c | ||
|
|
f02d34cccb | ||
|
|
56d2bdf73a |
@@ -11,6 +11,7 @@ from core.application_queue_manager import ApplicationQueueManager, PublishFrom
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.moderation.base import ModerationException
|
||||
from core.tools.entities.tool_entities import ToolRuntimeVariablePool
|
||||
@@ -194,6 +195,13 @@ class AssistantApplicationRunner(AppRunner):
|
||||
memory=memory,
|
||||
)
|
||||
|
||||
# change function call strategy based on LLM model
|
||||
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
|
||||
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
|
||||
|
||||
if set([ModelFeature.MULTI_TOOL_CALL, ModelFeature.TOOL_CALL]).intersection(model_schema.features):
|
||||
agent_entity.strategy = AgentEntity.Strategy.FUNCTION_CALLING
|
||||
|
||||
# start agent runner
|
||||
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
|
||||
assistant_cot_runner = AssistantCotApplicationRunner(
|
||||
@@ -209,9 +217,9 @@ class AssistantApplicationRunner(AppRunner):
|
||||
prompt_messages=prompt_message,
|
||||
variables_pool=tool_variables,
|
||||
db_variables=tool_conversation_variables,
|
||||
model_instance=model_instance
|
||||
)
|
||||
invoke_result = assistant_cot_runner.run(
|
||||
model_instance=model_instance,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
query=query,
|
||||
@@ -229,10 +237,10 @@ class AssistantApplicationRunner(AppRunner):
|
||||
memory=memory,
|
||||
prompt_messages=prompt_message,
|
||||
variables_pool=tool_variables,
|
||||
db_variables=tool_conversation_variables
|
||||
db_variables=tool_conversation_variables,
|
||||
model_instance=model_instance
|
||||
)
|
||||
invoke_result = assistant_fc_runner.run(
|
||||
model_instance=model_instance,
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
query=query,
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import logging
|
||||
import json
|
||||
|
||||
from typing import Optional, List, Tuple, Union
|
||||
from typing import Optional, List, Tuple, Union, cast
|
||||
from datetime import datetime
|
||||
from mimetypes import guess_extension
|
||||
|
||||
@@ -27,7 +27,10 @@ from core.entities.application_entities import ModelConfigEntity, \
|
||||
AgentEntity, AppOrchestrationConfigEntity, ApplicationGenerateEntity, InvokeFrom
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.model_manager import ModelInstance
|
||||
from core.file.message_file_parser import FileTransferMethod
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -45,6 +48,7 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
prompt_messages: Optional[List[PromptMessage]] = None,
|
||||
variables_pool: Optional[ToolRuntimeVariablePool] = None,
|
||||
db_variables: Optional[ToolConversationVariables] = None,
|
||||
model_instance: ModelInstance = None
|
||||
) -> None:
|
||||
"""
|
||||
Agent runner
|
||||
@@ -71,6 +75,7 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
self.history_prompt_messages = prompt_messages
|
||||
self.variables_pool = variables_pool
|
||||
self.db_variables_pool = db_variables
|
||||
self.model_instance = model_instance
|
||||
|
||||
# init callback
|
||||
self.agent_callback = DifyAgentCallbackHandler()
|
||||
@@ -95,6 +100,14 @@ class BaseAssistantApplicationRunner(AppRunner):
|
||||
MessageAgentThought.message_id == self.message.id,
|
||||
).count()
|
||||
|
||||
# check if model supports stream tool call
|
||||
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
|
||||
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
|
||||
if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
|
||||
self.stream_tool_call = True
|
||||
else:
|
||||
self.stream_tool_call = False
|
||||
|
||||
def _repacket_app_orchestration_config(self, app_orchestration_config: AppOrchestrationConfigEntity) -> AppOrchestrationConfigEntity:
|
||||
"""
|
||||
Repacket app orchestration config
|
||||
|
||||
@@ -20,8 +20,7 @@ from core.features.assistant_base_runner import BaseAssistantApplicationRunner
|
||||
from models.model import Conversation, Message
|
||||
|
||||
class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
def run(self, model_instance: ModelInstance,
|
||||
conversation: Conversation,
|
||||
def run(self, conversation: Conversation,
|
||||
message: Message,
|
||||
query: str,
|
||||
) -> Union[Generator, LLMResult]:
|
||||
@@ -82,6 +81,8 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
llm_usage.completion_price += usage.completion_price
|
||||
|
||||
model_instance = self.model_instance
|
||||
|
||||
while function_call_state and iteration_step <= max_iteration_steps:
|
||||
# continue to run until there is not any tool call
|
||||
function_call_state = False
|
||||
@@ -390,7 +391,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
||||
# remove Action: xxx from agent thought
|
||||
agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
|
||||
|
||||
if action_name and action_input:
|
||||
if action_name and action_input is not None:
|
||||
return AgentScratchpadUnit(
|
||||
agent_response=content,
|
||||
thought=agent_thought,
|
||||
|
||||
@@ -5,7 +5,7 @@ from typing import Union, Generator, Dict, Any, Tuple, List
|
||||
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, UserPromptMessage,\
|
||||
SystemPromptMessage, AssistantPromptMessage, ToolPromptMessage, PromptMessageTool
|
||||
from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult, LLMUsage
|
||||
from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult, LLMUsage, LLMResultChunkDelta
|
||||
from core.model_manager import ModelInstance
|
||||
from core.application_queue_manager import PublishFrom
|
||||
|
||||
@@ -20,8 +20,7 @@ from models.model import Conversation, Message, MessageAgentThought
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
def run(self, model_instance: ModelInstance,
|
||||
conversation: Conversation,
|
||||
def run(self, conversation: Conversation,
|
||||
message: Message,
|
||||
query: str,
|
||||
) -> Generator[LLMResultChunk, None, None]:
|
||||
@@ -81,6 +80,8 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
llm_usage.completion_price += usage.completion_price
|
||||
|
||||
model_instance = self.model_instance
|
||||
|
||||
while function_call_state and iteration_step <= max_iteration_steps:
|
||||
function_call_state = False
|
||||
|
||||
@@ -101,12 +102,12 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
# recale llm max tokens
|
||||
self.recale_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_orchestration_config.model_config.parameters,
|
||||
tools=prompt_messages_tools,
|
||||
stop=app_orchestration_config.model_config.stop,
|
||||
stream=True,
|
||||
stream=self.stream_tool_call,
|
||||
user=self.user_id,
|
||||
callbacks=[],
|
||||
)
|
||||
@@ -122,11 +123,41 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
|
||||
current_llm_usage = None
|
||||
|
||||
for chunk in chunks:
|
||||
if self.stream_tool_call:
|
||||
for chunk in chunks:
|
||||
# check if there is any tool call
|
||||
if self.check_tool_calls(chunk):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_tool_calls(chunk))
|
||||
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps({
|
||||
tool_call[1]: tool_call[2] for tool_call in tool_calls
|
||||
}, ensure_ascii=False)
|
||||
except json.JSONDecodeError as e:
|
||||
# ensure ascii to avoid encoding error
|
||||
tool_call_inputs = json.dumps({
|
||||
tool_call[1]: tool_call[2] for tool_call in tool_calls
|
||||
})
|
||||
|
||||
if chunk.delta.message and chunk.delta.message.content:
|
||||
if isinstance(chunk.delta.message.content, list):
|
||||
for content in chunk.delta.message.content:
|
||||
response += content.data
|
||||
else:
|
||||
response += chunk.delta.message.content
|
||||
|
||||
if chunk.delta.usage:
|
||||
increase_usage(llm_usage, chunk.delta.usage)
|
||||
current_llm_usage = chunk.delta.usage
|
||||
|
||||
yield chunk
|
||||
else:
|
||||
result: LLMResult = chunks
|
||||
# check if there is any tool call
|
||||
if self.check_tool_calls(chunk):
|
||||
if self.check_blocking_tool_calls(result):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_tool_calls(chunk))
|
||||
tool_calls.extend(self.extract_blocking_tool_calls(result))
|
||||
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps({
|
||||
@@ -138,18 +169,30 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
tool_call[1]: tool_call[2] for tool_call in tool_calls
|
||||
})
|
||||
|
||||
if chunk.delta.message and chunk.delta.message.content:
|
||||
if isinstance(chunk.delta.message.content, list):
|
||||
for content in chunk.delta.message.content:
|
||||
if result.usage:
|
||||
increase_usage(llm_usage, result.usage)
|
||||
current_llm_usage = result.usage
|
||||
|
||||
if result.message and result.message.content:
|
||||
if isinstance(result.message.content, list):
|
||||
for content in result.message.content:
|
||||
response += content.data
|
||||
else:
|
||||
response += chunk.delta.message.content
|
||||
response += result.message.content
|
||||
|
||||
if chunk.delta.usage:
|
||||
increase_usage(llm_usage, chunk.delta.usage)
|
||||
current_llm_usage = chunk.delta.usage
|
||||
if not result.message.content:
|
||||
result.message.content = ''
|
||||
|
||||
yield chunk
|
||||
yield LLMResultChunk(
|
||||
model=model_instance.model,
|
||||
prompt_messages=result.prompt_messages,
|
||||
system_fingerprint=result.system_fingerprint,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=result.message,
|
||||
usage=result.usage,
|
||||
)
|
||||
)
|
||||
|
||||
# save thought
|
||||
self.save_agent_thought(
|
||||
@@ -287,6 +330,14 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
if llm_result_chunk.delta.message.tool_calls:
|
||||
return True
|
||||
return False
|
||||
|
||||
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
|
||||
"""
|
||||
Check if there is any blocking tool call in llm result
|
||||
"""
|
||||
if llm_result.message.tool_calls:
|
||||
return True
|
||||
return False
|
||||
|
||||
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
|
||||
"""
|
||||
@@ -304,6 +355,23 @@ class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner):
|
||||
))
|
||||
|
||||
return tool_calls
|
||||
|
||||
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]:
|
||||
"""
|
||||
Extract blocking tool calls from llm result
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
|
||||
"""
|
||||
tool_calls = []
|
||||
for prompt_message in llm_result.message.tool_calls:
|
||||
tool_calls.append((
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
json.loads(prompt_message.function.arguments),
|
||||
))
|
||||
|
||||
return tool_calls
|
||||
|
||||
def organize_prompt_messages(self, prompt_template: str,
|
||||
query: str = None,
|
||||
|
||||
@@ -78,6 +78,7 @@ class ModelFeature(Enum):
|
||||
MULTI_TOOL_CALL = "multi-tool-call"
|
||||
AGENT_THOUGHT = "agent-thought"
|
||||
VISION = "vision"
|
||||
STREAM_TOOL_CALL = "stream-tool-call"
|
||||
|
||||
|
||||
class DefaultParameterName(Enum):
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 4096
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 16385
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 16385
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 16385
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 4096
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 128000
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 128000
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 32768
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 128000
|
||||
|
||||
@@ -6,6 +6,7 @@ model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 8192
|
||||
|
||||
@@ -3,14 +3,14 @@ from typing import Generator, Iterator, List, Optional, Union, cast
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageTool,
|
||||
SystemPromptMessage, UserPromptMessage)
|
||||
SystemPromptMessage, UserPromptMessage, ToolPromptMessage)
|
||||
from core.model_runtime.entities.model_entities import (AIModelEntity, FetchFrom, ModelPropertyKey, ModelType,
|
||||
ParameterRule, ParameterType)
|
||||
ParameterRule, ParameterType, ModelFeature)
|
||||
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
|
||||
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.model_runtime.model_providers.xinference.llm.xinference_helper import (XinferenceHelper,
|
||||
from core.model_runtime.model_providers.xinference.xinference_helper import (XinferenceHelper,
|
||||
XinferenceModelExtraParameter)
|
||||
from core.model_runtime.utils import helper
|
||||
from openai import (APIConnectionError, APITimeoutError, AuthenticationError, ConflictError, InternalServerError,
|
||||
@@ -33,6 +33,12 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
|
||||
see `core.model_runtime.model_providers.__base.large_language_model.LargeLanguageModel._invoke`
|
||||
"""
|
||||
if 'temperature' in model_parameters:
|
||||
if model_parameters['temperature'] < 0.01:
|
||||
model_parameters['temperature'] = 0.01
|
||||
elif model_parameters['temperature'] > 1.0:
|
||||
model_parameters['temperature'] = 0.99
|
||||
|
||||
return self._generate(
|
||||
model=model, credentials=credentials, prompt_messages=prompt_messages, model_parameters=model_parameters,
|
||||
tools=tools, stop=stop, stream=stream, user=user,
|
||||
@@ -65,6 +71,9 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
credentials['completion_type'] = 'completion'
|
||||
else:
|
||||
raise ValueError(f'xinference model ability {extra_param.model_ability} is not supported')
|
||||
|
||||
if extra_param.support_function_call:
|
||||
credentials['support_function_call'] = True
|
||||
|
||||
except RuntimeError as e:
|
||||
raise CredentialsValidateFailedError(f'Xinference credentials validate failed: {e}')
|
||||
@@ -220,6 +229,9 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
elif isinstance(message, SystemPromptMessage):
|
||||
message = cast(SystemPromptMessage, message)
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
message = cast(ToolPromptMessage, message)
|
||||
message_dict = {"tool_call_id": message.tool_call_id, "role": "tool", "content": message.content}
|
||||
else:
|
||||
raise ValueError(f"Unknown message type {type(message)}")
|
||||
|
||||
@@ -237,7 +249,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
label=I18nObject(
|
||||
zh_Hans='温度',
|
||||
en_US='Temperature'
|
||||
)
|
||||
),
|
||||
),
|
||||
ParameterRule(
|
||||
name='top_p',
|
||||
@@ -282,6 +294,8 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
completion_type = LLMMode.COMPLETION.value
|
||||
else:
|
||||
raise ValueError(f'xinference model ability {extra_args.model_ability} is not supported')
|
||||
|
||||
support_function_call = credentials.get('support_function_call', False)
|
||||
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
@@ -290,6 +304,9 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
),
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_type=ModelType.LLM,
|
||||
features=[
|
||||
ModelFeature.TOOL_CALL
|
||||
] if support_function_call else [],
|
||||
model_properties={
|
||||
ModelPropertyKey.MODE: completion_type,
|
||||
},
|
||||
@@ -310,6 +327,12 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
||||
|
||||
extra_model_kwargs can be got by `XinferenceHelper.get_xinference_extra_parameter`
|
||||
"""
|
||||
if 'server_url' not in credentials:
|
||||
raise CredentialsValidateFailedError('server_url is required in credentials')
|
||||
|
||||
if credentials['server_url'].endswith('/'):
|
||||
credentials['server_url'] = credentials['server_url'][:-1]
|
||||
|
||||
client = OpenAI(
|
||||
base_url=f'{credentials["server_url"]}/v1',
|
||||
api_key='abc',
|
||||
|
||||
@@ -2,7 +2,7 @@ import time
|
||||
from typing import Optional
|
||||
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType, PriceType
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType, PriceType, ModelPropertyKey
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (InvokeAuthorizationError, InvokeBadRequestError, InvokeConnectionError,
|
||||
InvokeError, InvokeRateLimitError, InvokeServerUnavailableError)
|
||||
@@ -10,6 +10,7 @@ from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from xinference_client.client.restful.restful_client import Client, RESTfulEmbeddingModelHandle, RESTfulModelHandle
|
||||
|
||||
from core.model_runtime.model_providers.xinference.xinference_helper import XinferenceHelper
|
||||
|
||||
class XinferenceTextEmbeddingModel(TextEmbeddingModel):
|
||||
"""
|
||||
@@ -102,8 +103,15 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
|
||||
:return:
|
||||
"""
|
||||
try:
|
||||
server_url = credentials['server_url']
|
||||
model_uid = credentials['model_uid']
|
||||
extra_args = XinferenceHelper.get_xinference_extra_parameter(server_url=server_url, model_uid=model_uid)
|
||||
|
||||
if extra_args.max_tokens:
|
||||
credentials['max_tokens'] = extra_args.max_tokens
|
||||
|
||||
self._invoke(model=model, credentials=credentials, texts=['ping'])
|
||||
except InvokeAuthorizationError:
|
||||
except (InvokeAuthorizationError, RuntimeError):
|
||||
raise CredentialsValidateFailedError('Invalid api key')
|
||||
|
||||
@property
|
||||
@@ -160,6 +168,7 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
|
||||
"""
|
||||
used to define customizable model schema
|
||||
"""
|
||||
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(
|
||||
@@ -167,7 +176,10 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
|
||||
),
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
model_properties={},
|
||||
model_properties={
|
||||
ModelPropertyKey.MAX_CHUNKS: 1,
|
||||
ModelPropertyKey.CONTEXT_SIZE: 'max_tokens' in credentials and credentials['max_tokens'] or 512,
|
||||
},
|
||||
parameter_rules=[]
|
||||
)
|
||||
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from threading import Lock
|
||||
from time import time
|
||||
from typing import List
|
||||
from os import path
|
||||
|
||||
from requests import get
|
||||
from requests.adapters import HTTPAdapter
|
||||
@@ -12,11 +13,16 @@ class XinferenceModelExtraParameter(object):
|
||||
model_format: str
|
||||
model_handle_type: str
|
||||
model_ability: List[str]
|
||||
max_tokens: int = 512
|
||||
support_function_call: bool = False
|
||||
|
||||
def __init__(self, model_format: str, model_handle_type: str, model_ability: List[str]) -> None:
|
||||
def __init__(self, model_format: str, model_handle_type: str, model_ability: List[str],
|
||||
support_function_call: bool, max_tokens: int) -> None:
|
||||
self.model_format = model_format
|
||||
self.model_handle_type = model_handle_type
|
||||
self.model_ability = model_ability
|
||||
self.support_function_call = support_function_call
|
||||
self.max_tokens = max_tokens
|
||||
|
||||
cache = {}
|
||||
cache_lock = Lock()
|
||||
@@ -49,7 +55,7 @@ class XinferenceHelper:
|
||||
get xinference model extra parameter like model_format and model_handle_type
|
||||
"""
|
||||
|
||||
url = f'{server_url}/v1/models/{model_uid}'
|
||||
url = path.join(server_url, 'v1/models', model_uid)
|
||||
|
||||
# this methid is surrounded by a lock, and default requests may hang forever, so we just set a Adapter with max_retries=3
|
||||
session = Session()
|
||||
@@ -66,10 +72,12 @@ class XinferenceHelper:
|
||||
|
||||
response_json = response.json()
|
||||
|
||||
model_format = response_json['model_format']
|
||||
model_ability = response_json['model_ability']
|
||||
model_format = response_json.get('model_format', 'ggmlv3')
|
||||
model_ability = response_json.get('model_ability', [])
|
||||
|
||||
if model_format == 'ggmlv3' and 'chatglm' in response_json['model_name']:
|
||||
if response_json.get('model_type') == 'embedding':
|
||||
model_handle_type = 'embedding'
|
||||
elif model_format == 'ggmlv3' and 'chatglm' in response_json['model_name']:
|
||||
model_handle_type = 'chatglm'
|
||||
elif 'generate' in model_ability:
|
||||
model_handle_type = 'generate'
|
||||
@@ -78,8 +86,13 @@ class XinferenceHelper:
|
||||
else:
|
||||
raise NotImplementedError(f'xinference model handle type {model_handle_type} is not supported')
|
||||
|
||||
support_function_call = 'tools' in model_ability
|
||||
max_tokens = response_json.get('max_tokens', 512)
|
||||
|
||||
return XinferenceModelExtraParameter(
|
||||
model_format=model_format,
|
||||
model_handle_type=model_handle_type,
|
||||
model_ability=model_ability
|
||||
model_ability=model_ability,
|
||||
support_function_call=support_function_call,
|
||||
max_tokens=max_tokens
|
||||
)
|
||||
@@ -2,6 +2,10 @@ model: glm-3-turbo
|
||||
label:
|
||||
en_US: glm-3-turbo
|
||||
model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
parameter_rules:
|
||||
|
||||
@@ -2,6 +2,10 @@ model: glm-4
|
||||
label:
|
||||
en_US: glm-4
|
||||
model_type: llm
|
||||
features:
|
||||
- multi-tool-call
|
||||
- agent-thought
|
||||
- stream-tool-call
|
||||
model_properties:
|
||||
mode: chat
|
||||
parameter_rules:
|
||||
|
||||
@@ -48,7 +48,7 @@ dashscope[tokenizer]~=1.14.0
|
||||
huggingface_hub~=0.16.4
|
||||
transformers~=4.31.0
|
||||
pandas==1.5.3
|
||||
xinference-client~=0.6.4
|
||||
xinference-client~=0.8.1
|
||||
safetensors==0.3.2
|
||||
zhipuai==1.0.7
|
||||
werkzeug==2.3.8
|
||||
|
||||
@@ -19,58 +19,86 @@ class MockXinferenceClass(object):
|
||||
raise RuntimeError('404 Not Found')
|
||||
|
||||
if 'generate' == model_uid:
|
||||
return RESTfulGenerateModelHandle(model_uid, base_url=self.base_url)
|
||||
return RESTfulGenerateModelHandle(model_uid, base_url=self.base_url, auth_headers={})
|
||||
if 'chat' == model_uid:
|
||||
return RESTfulChatModelHandle(model_uid, base_url=self.base_url)
|
||||
return RESTfulChatModelHandle(model_uid, base_url=self.base_url, auth_headers={})
|
||||
if 'embedding' == model_uid:
|
||||
return RESTfulEmbeddingModelHandle(model_uid, base_url=self.base_url)
|
||||
return RESTfulEmbeddingModelHandle(model_uid, base_url=self.base_url, auth_headers={})
|
||||
if 'rerank' == model_uid:
|
||||
return RESTfulRerankModelHandle(model_uid, base_url=self.base_url)
|
||||
return RESTfulRerankModelHandle(model_uid, base_url=self.base_url, auth_headers={})
|
||||
raise RuntimeError('404 Not Found')
|
||||
|
||||
def get(self: Session, url: str, **kwargs):
|
||||
if '/v1/models/' in url:
|
||||
response = Response()
|
||||
|
||||
response = Response()
|
||||
if 'v1/models/' in url:
|
||||
# get model uid
|
||||
model_uid = url.split('/')[-1]
|
||||
if not re.match(r'[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}', model_uid) and \
|
||||
model_uid not in ['generate', 'chat', 'embedding', 'rerank']:
|
||||
response.status_code = 404
|
||||
raise ConnectionError('404 Not Found')
|
||||
return response
|
||||
|
||||
# check if url is valid
|
||||
if not re.match(r'^(https?):\/\/[^\s\/$.?#].[^\s]*$', url):
|
||||
response.status_code = 404
|
||||
raise ConnectionError('404 Not Found')
|
||||
|
||||
return response
|
||||
|
||||
if model_uid in ['generate', 'chat']:
|
||||
response.status_code = 200
|
||||
response._content = b'''{
|
||||
"model_type": "LLM",
|
||||
"address": "127.0.0.1:43877",
|
||||
"accelerators": [
|
||||
"0",
|
||||
"1"
|
||||
],
|
||||
"model_name": "chatglm3-6b",
|
||||
"model_lang": [
|
||||
"en"
|
||||
],
|
||||
"model_ability": [
|
||||
"generate",
|
||||
"chat"
|
||||
],
|
||||
"model_description": "latest chatglm3",
|
||||
"model_format": "pytorch",
|
||||
"model_size_in_billions": 7,
|
||||
"quantization": "none",
|
||||
"model_hub": "huggingface",
|
||||
"revision": null,
|
||||
"context_length": 2048,
|
||||
"replica": 1
|
||||
}'''
|
||||
return response
|
||||
|
||||
elif model_uid == 'embedding':
|
||||
response.status_code = 200
|
||||
response._content = b'''{
|
||||
"model_type": "embedding",
|
||||
"address": "127.0.0.1:43877",
|
||||
"accelerators": [
|
||||
"0",
|
||||
"1"
|
||||
],
|
||||
"model_name": "bge",
|
||||
"model_lang": [
|
||||
"en"
|
||||
],
|
||||
"revision": null,
|
||||
"max_tokens": 512
|
||||
}'''
|
||||
return response
|
||||
|
||||
elif 'v1/cluster/auth' in url:
|
||||
response.status_code = 200
|
||||
response._content = b'''{
|
||||
"model_type": "LLM",
|
||||
"address": "127.0.0.1:43877",
|
||||
"accelerators": [
|
||||
"0",
|
||||
"1"
|
||||
],
|
||||
"model_name": "chatglm3-6b",
|
||||
"model_lang": [
|
||||
"en"
|
||||
],
|
||||
"model_ability": [
|
||||
"generate",
|
||||
"chat"
|
||||
],
|
||||
"model_description": "latest chatglm3",
|
||||
"model_format": "pytorch",
|
||||
"model_size_in_billions": 7,
|
||||
"quantization": "none",
|
||||
"model_hub": "huggingface",
|
||||
"revision": null,
|
||||
"context_length": 2048,
|
||||
"replica": 1
|
||||
"auth": true
|
||||
}'''
|
||||
return response
|
||||
|
||||
def _check_cluster_authenticated(self):
|
||||
self._cluster_authed = True
|
||||
|
||||
def rerank(self: RESTfulRerankModelHandle, documents: List[str], query: str, top_n: int) -> dict:
|
||||
# check if self._model_uid is a valid uuid
|
||||
if not re.match(r'[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}', self._model_uid) and \
|
||||
@@ -133,6 +161,7 @@ MOCK = os.getenv('MOCK_SWITCH', 'false').lower() == 'true'
|
||||
def setup_xinference_mock(request, monkeypatch: MonkeyPatch):
|
||||
if MOCK:
|
||||
monkeypatch.setattr(Client, 'get_model', MockXinferenceClass.get_chat_model)
|
||||
monkeypatch.setattr(Client, '_check_cluster_authenticated', MockXinferenceClass._check_cluster_authenticated)
|
||||
monkeypatch.setattr(Session, 'get', MockXinferenceClass.get)
|
||||
monkeypatch.setattr(RESTfulEmbeddingModelHandle, 'create_embedding', MockXinferenceClass.create_embedding)
|
||||
monkeypatch.setattr(RESTfulRerankModelHandle, 'rerank', MockXinferenceClass.rerank)
|
||||
|
||||
Reference in New Issue
Block a user