mirror of
https://gitee.com/dify_ai/dify.git
synced 2025-12-06 19:42:42 +08:00
Compare commits
5 Commits
feat/loop
...
refactor/r
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a42c993a6b | ||
|
|
ad50c739b2 | ||
|
|
e05850c8fb | ||
|
|
303ca535c9 | ||
|
|
5bdc8c7ae6 |
@@ -325,7 +325,7 @@ class BaseAgentRunner(AppRunner):
|
||||
tool_name: str,
|
||||
tool_input: Union[str, dict],
|
||||
thought: str,
|
||||
observation: Union[str, str],
|
||||
observation: Union[str, dict],
|
||||
tool_invoke_meta: Union[str, dict],
|
||||
answer: str,
|
||||
messages_ids: list[str],
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import json
|
||||
import re
|
||||
from abc import abstractmethod
|
||||
from collections.abc import Generator
|
||||
from typing import Literal, Union
|
||||
|
||||
@@ -12,12 +13,10 @@ from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.tools.entities.tool_entities import ToolInvokeMeta
|
||||
from core.tools.tool.tool import Tool
|
||||
from core.tools.tool_engine import ToolEngine
|
||||
from models.model import Message
|
||||
|
||||
@@ -25,6 +24,7 @@ from models.model import Message
|
||||
class CotAgentRunner(BaseAgentRunner):
|
||||
_is_first_iteration = True
|
||||
_ignore_observation_providers = ['wenxin']
|
||||
_historic_prompt_messages: list[PromptMessage] = []
|
||||
|
||||
def run(self, message: Message,
|
||||
query: str,
|
||||
@@ -132,6 +132,7 @@ class CotAgentRunner(BaseAgentRunner):
|
||||
|
||||
# recalc llm max tokens
|
||||
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
||||
|
||||
# invoke model
|
||||
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
@@ -164,30 +165,12 @@ class CotAgentRunner(BaseAgentRunner):
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
for chunk in react_chunks:
|
||||
if isinstance(chunk, dict):
|
||||
scratchpad.agent_response += json.dumps(chunk)
|
||||
try:
|
||||
if scratchpad.action:
|
||||
raise Exception("")
|
||||
scratchpad.action_str = json.dumps(chunk)
|
||||
scratchpad.action = AgentScratchpadUnit.Action(
|
||||
action_name=chunk['action'],
|
||||
action_input=chunk['action_input']
|
||||
)
|
||||
except:
|
||||
scratchpad.thought += json.dumps(chunk)
|
||||
yield LLMResultChunk(
|
||||
model=self.model_config.model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint='',
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(
|
||||
content=json.dumps(chunk, ensure_ascii=False) # if ensure_ascii=True, the text in webui maybe garbled text
|
||||
),
|
||||
usage=None
|
||||
)
|
||||
)
|
||||
if isinstance(chunk, AgentScratchpadUnit.Action):
|
||||
action = chunk
|
||||
# detect action
|
||||
scratchpad.agent_response += json.dumps(chunk.dict())
|
||||
scratchpad.action_str = json.dumps(chunk.dict())
|
||||
scratchpad.action = action
|
||||
else:
|
||||
scratchpad.agent_response += chunk
|
||||
scratchpad.thought += chunk
|
||||
@@ -206,26 +189,28 @@ class CotAgentRunner(BaseAgentRunner):
|
||||
|
||||
scratchpad.thought = scratchpad.thought.strip() or 'I am thinking about how to help you'
|
||||
agent_scratchpad.append(scratchpad)
|
||||
|
||||
|
||||
# get llm usage
|
||||
if 'usage' in usage_dict:
|
||||
increase_usage(llm_usage, usage_dict['usage'])
|
||||
else:
|
||||
usage_dict['usage'] = LLMUsage.empty_usage()
|
||||
|
||||
self.save_agent_thought(agent_thought=agent_thought,
|
||||
tool_name=scratchpad.action.action_name if scratchpad.action else '',
|
||||
tool_input={
|
||||
scratchpad.action.action_name: scratchpad.action.action_input
|
||||
} if scratchpad.action else '',
|
||||
tool_invoke_meta={},
|
||||
thought=scratchpad.thought,
|
||||
observation='',
|
||||
answer=scratchpad.agent_response,
|
||||
messages_ids=[],
|
||||
llm_usage=usage_dict['usage'])
|
||||
self.save_agent_thought(
|
||||
agent_thought=agent_thought,
|
||||
tool_name=scratchpad.action.action_name if scratchpad.action else '',
|
||||
tool_input={
|
||||
scratchpad.action.action_name: scratchpad.action.action_input
|
||||
} if scratchpad.action else {},
|
||||
tool_invoke_meta={},
|
||||
thought=scratchpad.thought,
|
||||
observation={},
|
||||
answer=scratchpad.agent_response,
|
||||
messages_ids=[],
|
||||
llm_usage=usage_dict['usage']
|
||||
)
|
||||
|
||||
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
|
||||
if not scratchpad.is_final():
|
||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
||||
agent_thought_id=agent_thought.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
@@ -237,103 +222,34 @@ class CotAgentRunner(BaseAgentRunner):
|
||||
if scratchpad.action.action_name.lower() == "final answer":
|
||||
# action is final answer, return final answer directly
|
||||
try:
|
||||
final_answer = scratchpad.action.action_input if \
|
||||
isinstance(scratchpad.action.action_input, str) else \
|
||||
json.dumps(scratchpad.action.action_input)
|
||||
final_answer = json.dumps(scratchpad.action.action_input)
|
||||
except json.JSONDecodeError:
|
||||
final_answer = f'{scratchpad.action.action_input}'
|
||||
else:
|
||||
function_call_state = True
|
||||
|
||||
# action is tool call, invoke tool
|
||||
tool_call_name = scratchpad.action.action_name
|
||||
tool_call_args = scratchpad.action.action_input
|
||||
tool_instance = tool_instances.get(tool_call_name)
|
||||
if not tool_instance:
|
||||
answer = f"there is not a tool named {tool_call_name}"
|
||||
self.save_agent_thought(
|
||||
agent_thought=agent_thought,
|
||||
tool_name='',
|
||||
tool_input='',
|
||||
tool_invoke_meta=ToolInvokeMeta.error_instance(
|
||||
f"there is not a tool named {tool_call_name}"
|
||||
).to_dict(),
|
||||
thought=None,
|
||||
observation={
|
||||
tool_call_name: answer
|
||||
},
|
||||
answer=answer,
|
||||
messages_ids=[]
|
||||
)
|
||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
||||
agent_thought_id=agent_thought.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
else:
|
||||
if isinstance(tool_call_args, str):
|
||||
try:
|
||||
tool_call_args = json.loads(tool_call_args)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
|
||||
action=scratchpad.action,
|
||||
tool_instances=tool_instances
|
||||
)
|
||||
scratchpad.observation = tool_invoke_response
|
||||
scratchpad.agent_response = tool_invoke_response
|
||||
|
||||
# invoke tool
|
||||
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
||||
tool=tool_instance,
|
||||
tool_parameters=tool_call_args,
|
||||
user_id=self.user_id,
|
||||
tenant_id=self.tenant_id,
|
||||
message=self.message,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
agent_tool_callback=self.agent_callback
|
||||
)
|
||||
# publish files
|
||||
for message_file, save_as in message_files:
|
||||
if save_as:
|
||||
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
|
||||
self.save_agent_thought(
|
||||
agent_thought=agent_thought,
|
||||
tool_name=scratchpad.action.action_name,
|
||||
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
|
||||
thought=scratchpad.thought,
|
||||
observation={scratchpad.action.action_name: tool_invoke_response},
|
||||
tool_invoke_meta=tool_invoke_meta.to_dict(),
|
||||
answer=scratchpad.agent_response,
|
||||
messages_ids=message_file_ids,
|
||||
llm_usage=usage_dict['usage']
|
||||
)
|
||||
|
||||
# publish message file
|
||||
self.queue_manager.publish(QueueMessageFileEvent(
|
||||
message_file_id=message_file.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
# add message file ids
|
||||
message_file_ids.append(message_file.id)
|
||||
|
||||
# publish files
|
||||
for message_file, save_as in message_files:
|
||||
if save_as:
|
||||
self.variables_pool.set_file(tool_name=tool_call_name,
|
||||
value=message_file.id,
|
||||
name=save_as)
|
||||
self.queue_manager.publish(QueueMessageFileEvent(
|
||||
message_file_id=message_file.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
message_file_ids = [message_file.id for message_file, _ in message_files]
|
||||
|
||||
observation = tool_invoke_response
|
||||
|
||||
# save scratchpad
|
||||
scratchpad.observation = observation
|
||||
|
||||
# save agent thought
|
||||
self.save_agent_thought(
|
||||
agent_thought=agent_thought,
|
||||
tool_name=tool_call_name,
|
||||
tool_input={
|
||||
tool_call_name: tool_call_args
|
||||
},
|
||||
tool_invoke_meta={
|
||||
tool_call_name: tool_invoke_meta.to_dict()
|
||||
},
|
||||
thought=None,
|
||||
observation={
|
||||
tool_call_name: observation
|
||||
},
|
||||
answer=scratchpad.agent_response,
|
||||
messages_ids=message_file_ids,
|
||||
)
|
||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
||||
agent_thought_id=agent_thought.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
||||
agent_thought_id=agent_thought.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
# update prompt tool message
|
||||
for prompt_tool in prompt_messages_tools:
|
||||
@@ -378,11 +294,78 @@ class CotAgentRunner(BaseAgentRunner):
|
||||
system_fingerprint=''
|
||||
)), PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
def _handle_stream_react(self, llm_response: Generator[LLMResultChunk, None, None], usage: dict) \
|
||||
-> Generator[Union[str, dict], None, None]:
|
||||
def parse_json(json_str):
|
||||
def _handle_invoke_action(self, action: AgentScratchpadUnit.Action,
|
||||
tool_instances: dict[str, Tool]) -> tuple[str, ToolInvokeMeta]:
|
||||
"""
|
||||
handle invoke action
|
||||
:param action: action
|
||||
:param tool_instances: tool instances
|
||||
:return: observation, meta
|
||||
"""
|
||||
# action is tool call, invoke tool
|
||||
tool_call_name = action.action_name
|
||||
tool_call_args = action.action_input
|
||||
tool_instance = tool_instances.get(tool_call_name)
|
||||
|
||||
if not tool_instance:
|
||||
answer = f"there is not a tool named {tool_call_name}"
|
||||
return answer, ToolInvokeMeta.error_instance(answer)
|
||||
|
||||
if isinstance(tool_call_args, str):
|
||||
try:
|
||||
return json.loads(json_str.strip())
|
||||
tool_call_args = json.loads(tool_call_args)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# invoke tool
|
||||
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
||||
tool=tool_instance,
|
||||
tool_parameters=tool_call_args,
|
||||
user_id=self.user_id,
|
||||
tenant_id=self.tenant_id,
|
||||
message=self.message,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
agent_tool_callback=self.agent_callback
|
||||
)
|
||||
|
||||
# publish files
|
||||
for message_file, save_as in message_files:
|
||||
if save_as:
|
||||
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
|
||||
|
||||
# publish message file
|
||||
self.queue_manager.publish(QueueMessageFileEvent(
|
||||
message_file_id=message_file.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
# add message file ids
|
||||
message_file_ids.append(message_file.id)
|
||||
|
||||
# publish files
|
||||
for message_file, save_as in message_files:
|
||||
if save_as:
|
||||
self.variables_pool.set_file(
|
||||
tool_name=tool_call_name,
|
||||
value=message_file.id,
|
||||
name=save_as
|
||||
)
|
||||
self.queue_manager.publish(QueueMessageFileEvent(
|
||||
message_file_id=message_file.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
message_file_ids = [message_file.id for message_file, _ in message_files]
|
||||
|
||||
return tool_invoke_response, tool_invoke_meta
|
||||
|
||||
def _handle_stream_react(self, llm_response: Generator[LLMResultChunk, None, None], usage: dict) \
|
||||
-> Generator[Union[str, AgentScratchpadUnit.Action], None, None]:
|
||||
def parse_action(json_str):
|
||||
try:
|
||||
action = json.loads(json_str)
|
||||
if 'action' in action and 'action_input' in action:
|
||||
return AgentScratchpadUnit.Action(
|
||||
action_name=action['action'],
|
||||
action_input=action['action_input'],
|
||||
)
|
||||
except:
|
||||
return json_str
|
||||
|
||||
@@ -392,7 +375,7 @@ class CotAgentRunner(BaseAgentRunner):
|
||||
return
|
||||
for block in code_blocks:
|
||||
json_text = re.sub(r'^[a-zA-Z]+\n', '', block.strip(), flags=re.MULTILINE)
|
||||
yield parse_json(json_text)
|
||||
yield parse_action(json_text)
|
||||
|
||||
code_block_cache = ''
|
||||
code_block_delimiter_count = 0
|
||||
@@ -453,7 +436,7 @@ class CotAgentRunner(BaseAgentRunner):
|
||||
|
||||
if got_json:
|
||||
got_json = False
|
||||
yield parse_json(json_cache)
|
||||
yield parse_action(json_cache)
|
||||
json_cache = ''
|
||||
json_quote_count = 0
|
||||
in_json = False
|
||||
@@ -467,7 +450,16 @@ class CotAgentRunner(BaseAgentRunner):
|
||||
yield code_block_cache
|
||||
|
||||
if json_cache:
|
||||
yield parse_json(json_cache)
|
||||
yield parse_action(json_cache)
|
||||
|
||||
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
|
||||
"""
|
||||
convert dict to action
|
||||
"""
|
||||
return AgentScratchpadUnit.Action(
|
||||
action_name=action['action'],
|
||||
action_input=action['action_input']
|
||||
)
|
||||
|
||||
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
|
||||
"""
|
||||
@@ -513,177 +505,42 @@ class CotAgentRunner(BaseAgentRunner):
|
||||
current_scratchpad.observation = message.content
|
||||
|
||||
return agent_scratchpad
|
||||
|
||||
def _check_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
||||
agent_prompt_message: AgentPromptEntity,
|
||||
):
|
||||
"""
|
||||
check chain of thought prompt messages, a standard prompt message is like:
|
||||
Respond to the human as helpfully and accurately as possible.
|
||||
|
||||
{{instruction}}
|
||||
|
||||
You have access to the following tools:
|
||||
|
||||
{{tools}}
|
||||
|
||||
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||
Valid action values: "Final Answer" or {{tool_names}}
|
||||
|
||||
Provide only ONE action per $JSON_BLOB, as shown:
|
||||
|
||||
```
|
||||
{
|
||||
"action": $TOOL_NAME,
|
||||
"action_input": $ACTION_INPUT
|
||||
}
|
||||
```
|
||||
"""
|
||||
|
||||
# parse agent prompt message
|
||||
first_prompt = agent_prompt_message.first_prompt
|
||||
next_iteration = agent_prompt_message.next_iteration
|
||||
|
||||
if not isinstance(first_prompt, str) or not isinstance(next_iteration, str):
|
||||
raise ValueError("first_prompt or next_iteration is required in CoT agent mode")
|
||||
|
||||
# check instruction, tools, and tool_names slots
|
||||
if not first_prompt.find("{{instruction}}") >= 0:
|
||||
raise ValueError("{{instruction}} is required in first_prompt")
|
||||
if not first_prompt.find("{{tools}}") >= 0:
|
||||
raise ValueError("{{tools}} is required in first_prompt")
|
||||
if not first_prompt.find("{{tool_names}}") >= 0:
|
||||
raise ValueError("{{tool_names}} is required in first_prompt")
|
||||
|
||||
if mode == "completion":
|
||||
if not first_prompt.find("{{query}}") >= 0:
|
||||
raise ValueError("{{query}} is required in first_prompt")
|
||||
if not first_prompt.find("{{agent_scratchpad}}") >= 0:
|
||||
raise ValueError("{{agent_scratchpad}} is required in first_prompt")
|
||||
|
||||
if mode == "completion":
|
||||
if not next_iteration.find("{{observation}}") >= 0:
|
||||
raise ValueError("{{observation}} is required in next_iteration")
|
||||
|
||||
def _convert_scratchpad_list_to_str(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
|
||||
"""
|
||||
convert agent scratchpad list to str
|
||||
"""
|
||||
next_iteration = self.app_config.agent.prompt.next_iteration
|
||||
|
||||
result = ''
|
||||
for scratchpad in agent_scratchpad:
|
||||
result += (scratchpad.thought or '') + (scratchpad.action_str or '') + \
|
||||
next_iteration.replace("{{observation}}", scratchpad.observation or 'It seems that no response is available')
|
||||
|
||||
return result
|
||||
|
||||
def _organize_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
||||
@abstractmethod
|
||||
def _format_instructions(self, instruction: str, tools: list[PromptMessageTool],
|
||||
prompt_template: AgentPromptEntity
|
||||
) -> str:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _format_scratchpads(self, scratchpad: list[AgentScratchpadUnit],
|
||||
) -> str:
|
||||
"""
|
||||
format scratchpads
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _organize_historic_prompt_messages(self, mode: Literal["completion", "chat"],
|
||||
prompt_messages: list[PromptMessage],
|
||||
tools: list[PromptMessageTool],
|
||||
agent_prompt_message: AgentPromptEntity,
|
||||
instruction: str,
|
||||
) -> list[PromptMessage]:
|
||||
"""
|
||||
organize historic prompt messages
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _organize_current_prompt_messages(self, mode: Literal["completion", "chat"],
|
||||
prompt_messages: list[PromptMessage],
|
||||
tools: list[PromptMessageTool],
|
||||
agent_scratchpad: list[AgentScratchpadUnit],
|
||||
agent_prompt_message: AgentPromptEntity,
|
||||
instruction: str,
|
||||
input: str,
|
||||
) -> list[PromptMessage]:
|
||||
"""
|
||||
organize chain of thought prompt messages, a standard prompt message is like:
|
||||
Respond to the human as helpfully and accurately as possible.
|
||||
|
||||
{{instruction}}
|
||||
|
||||
You have access to the following tools:
|
||||
|
||||
{{tools}}
|
||||
|
||||
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
||||
Valid action values: "Final Answer" or {{tool_names}}
|
||||
|
||||
Provide only ONE action per $JSON_BLOB, as shown:
|
||||
|
||||
```
|
||||
{{{{
|
||||
"action": $TOOL_NAME,
|
||||
"action_input": $ACTION_INPUT
|
||||
}}}}
|
||||
```
|
||||
organize current prompt messages
|
||||
"""
|
||||
|
||||
self._check_cot_prompt_messages(mode, agent_prompt_message)
|
||||
|
||||
# parse agent prompt message
|
||||
first_prompt = agent_prompt_message.first_prompt
|
||||
|
||||
# parse tools
|
||||
tools_str = self._jsonify_tool_prompt_messages(tools)
|
||||
|
||||
# parse tools name
|
||||
tool_names = '"' + '","'.join([tool.name for tool in tools]) + '"'
|
||||
|
||||
# get system message
|
||||
system_message = first_prompt.replace("{{instruction}}", instruction) \
|
||||
.replace("{{tools}}", tools_str) \
|
||||
.replace("{{tool_names}}", tool_names)
|
||||
|
||||
# organize prompt messages
|
||||
if mode == "chat":
|
||||
# override system message
|
||||
overridden = False
|
||||
prompt_messages = prompt_messages.copy()
|
||||
for prompt_message in prompt_messages:
|
||||
if isinstance(prompt_message, SystemPromptMessage):
|
||||
prompt_message.content = system_message
|
||||
overridden = True
|
||||
break
|
||||
|
||||
# convert tool prompt messages to user prompt messages
|
||||
for idx, prompt_message in enumerate(prompt_messages):
|
||||
if isinstance(prompt_message, ToolPromptMessage):
|
||||
prompt_messages[idx] = UserPromptMessage(
|
||||
content=prompt_message.content
|
||||
)
|
||||
|
||||
if not overridden:
|
||||
prompt_messages.insert(0, SystemPromptMessage(
|
||||
content=system_message,
|
||||
))
|
||||
|
||||
# add assistant message
|
||||
if len(agent_scratchpad) > 0 and not self._is_first_iteration:
|
||||
prompt_messages.append(AssistantPromptMessage(
|
||||
content=(agent_scratchpad[-1].thought or '') + (agent_scratchpad[-1].action_str or ''),
|
||||
))
|
||||
|
||||
# add user message
|
||||
if len(agent_scratchpad) > 0 and not self._is_first_iteration:
|
||||
prompt_messages.append(UserPromptMessage(
|
||||
content=(agent_scratchpad[-1].observation or 'It seems that no response is available'),
|
||||
))
|
||||
|
||||
self._is_first_iteration = False
|
||||
|
||||
return prompt_messages
|
||||
elif mode == "completion":
|
||||
# parse agent scratchpad
|
||||
agent_scratchpad_str = self._convert_scratchpad_list_to_str(agent_scratchpad)
|
||||
self._is_first_iteration = False
|
||||
# parse prompt messages
|
||||
return [UserPromptMessage(
|
||||
content=first_prompt.replace("{{instruction}}", instruction)
|
||||
.replace("{{tools}}", tools_str)
|
||||
.replace("{{tool_names}}", tool_names)
|
||||
.replace("{{query}}", input)
|
||||
.replace("{{agent_scratchpad}}", agent_scratchpad_str),
|
||||
)]
|
||||
else:
|
||||
raise ValueError(f"mode {mode} is not supported")
|
||||
|
||||
def _jsonify_tool_prompt_messages(self, tools: list[PromptMessageTool]) -> str:
|
||||
"""
|
||||
jsonify tool prompt messages
|
||||
"""
|
||||
tools = jsonable_encoder(tools)
|
||||
try:
|
||||
return json.dumps(tools, ensure_ascii=False)
|
||||
except json.JSONDecodeError:
|
||||
return json.dumps(tools)
|
||||
pass
|
||||
65
api/core/agent/cot_chat_agent_runner.py
Normal file
65
api/core/agent/cot_chat_agent_runner.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import json
|
||||
from typing import Literal
|
||||
|
||||
from core.agent.cot_agent_runner import CotAgentRunner
|
||||
from core.agent.entities import AgentPromptEntity, AgentScratchpadUnit
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
|
||||
|
||||
|
||||
class CotChatAgentRunner(CotAgentRunner):
|
||||
def _format_instructions(self, instruction: str, tools: list[PromptMessageTool],
|
||||
prompt_template: AgentPromptEntity
|
||||
) -> str:
|
||||
"""
|
||||
format instructions
|
||||
"""
|
||||
result = prompt_template.first_prompt
|
||||
|
||||
# format tools
|
||||
result = result.replace('{{tools}}', json.dumps(tools))
|
||||
|
||||
result = result.replace('{{tool_names}}', ', '.join([tool.name for tool in tools]))
|
||||
|
||||
# format instruction
|
||||
result = result.replace('{{instruction}}', instruction)
|
||||
|
||||
return result
|
||||
|
||||
def _format_scratchpads(self, scratchpad: list[AgentScratchpadUnit]) -> str:
|
||||
"""
|
||||
format scratchpads
|
||||
"""
|
||||
result = ""
|
||||
|
||||
for unit in scratchpad:
|
||||
if unit.is_final():
|
||||
result += f"Final Answer: {unit.agent_response}"
|
||||
else:
|
||||
result += f"Thought: {unit.thought}\n\n"
|
||||
if unit.action_str:
|
||||
result += f"Action: {unit.action_str}\n\n"
|
||||
if unit.observation:
|
||||
result += f"Observation: {unit.observation}\n\n"
|
||||
|
||||
return result
|
||||
|
||||
def _organize_historic_prompt_messages(self, mode: Literal["completion", "chat"],
|
||||
prompt_messages: list[PromptMessage],
|
||||
tools: list[PromptMessageTool],
|
||||
agent_prompt_message: AgentPromptEntity,
|
||||
instruction: str,
|
||||
) -> list[PromptMessage]:
|
||||
"""
|
||||
organize historic prompt messages
|
||||
"""
|
||||
|
||||
def _organize_current_prompt_messages(self, mode: Literal["completion", "chat"],
|
||||
prompt_messages: list[PromptMessage],
|
||||
tools: list[PromptMessageTool],
|
||||
agent_prompt_message: AgentPromptEntity,
|
||||
instruction: str,
|
||||
input: str,
|
||||
) -> list[PromptMessage]:
|
||||
"""
|
||||
organize current prompt messages
|
||||
"""
|
||||
68
api/core/agent/cot_completion_agent_runner.py
Normal file
68
api/core/agent/cot_completion_agent_runner.py
Normal file
@@ -0,0 +1,68 @@
|
||||
import json
|
||||
from typing import Literal
|
||||
|
||||
from core.agent.cot_agent_runner import CotAgentRunner
|
||||
from core.agent.entities import AgentPromptEntity, AgentScratchpadUnit
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
|
||||
|
||||
|
||||
class CotCompletionAgentRunner(CotAgentRunner):
|
||||
def _format_instructions(self, instruction: str, tools: list[PromptMessageTool],
|
||||
prompt_template: AgentPromptEntity
|
||||
) -> str:
|
||||
"""
|
||||
format instructions
|
||||
"""
|
||||
result = prompt_template.first_prompt
|
||||
|
||||
# format tools
|
||||
result = result.replace('{{tools}}', json.dumps(tools))
|
||||
|
||||
result = result.replace('{{tool_names}}', ', '.join([tool.name for tool in tools]))
|
||||
|
||||
# format instruction
|
||||
result = result.replace('{{instruction}}', instruction)
|
||||
|
||||
return result
|
||||
|
||||
def _format_scratchpads(self, scratchpad: list[AgentScratchpadUnit],
|
||||
) -> str:
|
||||
"""
|
||||
format scratchpads
|
||||
"""
|
||||
result = ""
|
||||
|
||||
for unit in scratchpad:
|
||||
if unit.is_final():
|
||||
result += f"Final Answer: {unit.agent_response}"
|
||||
else:
|
||||
result += f"Thought: {unit.thought}\n\n"
|
||||
if unit.action_str:
|
||||
result += f"Action: {unit.action_str}\n\n"
|
||||
if unit.observation:
|
||||
result += f"Observation: {unit.observation}\n\n"
|
||||
|
||||
return result
|
||||
|
||||
def _organize_historic_prompt_messages(self, mode: Literal["completion", "chat"],
|
||||
prompt_messages: list[PromptMessage],
|
||||
tools: list[PromptMessageTool],
|
||||
agent_prompt_message: AgentPromptEntity,
|
||||
instruction: str,
|
||||
) -> list[PromptMessage]:
|
||||
"""
|
||||
organize historic prompt messages
|
||||
"""
|
||||
result = []
|
||||
|
||||
|
||||
def _organize_current_prompt_messages(self, mode: Literal["completion", "chat"],
|
||||
prompt_messages: list[PromptMessage],
|
||||
tools: list[PromptMessageTool],
|
||||
agent_prompt_message: AgentPromptEntity,
|
||||
instruction: str,
|
||||
input: str,
|
||||
) -> list[PromptMessage]:
|
||||
"""
|
||||
organize current prompt messages
|
||||
"""
|
||||
@@ -40,6 +40,14 @@ class AgentScratchpadUnit(BaseModel):
|
||||
observation: Optional[str] = None
|
||||
action: Optional[Action] = None
|
||||
|
||||
def is_final(self) -> bool:
|
||||
"""
|
||||
Check if the scratchpad unit is final.
|
||||
"""
|
||||
return self.action is None or (
|
||||
'final' in self.action.action_name.lower() and
|
||||
'answer' in self.action.action_name.lower()
|
||||
)
|
||||
|
||||
class AgentEntity(BaseModel):
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user