Compare commits

...

2 Commits

Author SHA1 Message Date
chenhe
ecc5ed04c5 update parameters and remove agent-thought from titan LLMs 2024-04-10 23:27:07 +08:00
crazywoola
e37613a43b feat: update claude-v1 2024-04-10 22:17:43 +08:00
6 changed files with 6 additions and 13 deletions

View File

@@ -2,8 +2,6 @@ model: amazon.titan-text-express-v1
label:
en_US: Titan Text G1 - Express
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 8192

View File

@@ -2,8 +2,6 @@ model: amazon.titan-text-lite-v1
label:
en_US: Titan Text G1 - Lite
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 4096

View File

@@ -50,3 +50,4 @@ pricing:
output: '0.024'
unit: '0.001'
currency: USD
deprecated: true

View File

@@ -22,7 +22,7 @@ parameter_rules:
min: 0
max: 500
default: 0
- name: max_tokens_to_sample
- name: max_tokens
use_template: max_tokens
required: true
default: 4096

View File

@@ -8,9 +8,9 @@ model_properties:
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
- name: p
use_template: top_p
- name: top_k
- name: k
label:
zh_Hans: 取样数量
en_US: Top k
@@ -19,7 +19,7 @@ parameter_rules:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens_to_sample
- name: max_tokens
use_template: max_tokens
required: true
default: 4096

View File

@@ -503,7 +503,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
if model_prefix == "amazon":
payload["textGenerationConfig"] = { **model_parameters }
payload["textGenerationConfig"]["stopSequences"] = ["User:"] + (stop if stop else [])
payload["textGenerationConfig"]["stopSequences"] = ["User:"]
payload["inputText"] = self._convert_messages_to_prompt(prompt_messages, model_prefix)
@@ -513,10 +513,6 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
payload["maxTokens"] = model_parameters.get("maxTokens")
payload["prompt"] = self._convert_messages_to_prompt(prompt_messages, model_prefix)
# jurassic models only support a single stop sequence
if stop:
payload["stopSequences"] = stop[0]
if model_parameters.get("presencePenalty"):
payload["presencePenalty"] = {model_parameters.get("presencePenalty")}
if model_parameters.get("frequencyPenalty"):