mirror of
https://gitee.com/amazingTest/Taisite-Platform.git
synced 2025-12-06 11:19:15 +08:00
Update README.md
This commit is contained in:
213
README.md
213
README.md
@@ -72,218 +72,13 @@ The platform follows the idea of "separate development frontend and backend". Th
|
||||
|
||||

|
||||
|
||||
## IV . Deploy
|
||||
## deploy
|
||||
|
||||
### Deploy under windows
|
||||
[click me](https://mp.weixin.qq.com/s/bLyDWHCAPCshF8vmbSHtWw)
|
||||
|
||||
#### 0. Clone
|
||||
## how to use
|
||||
|
||||
git clone https://github.com/amazingTest/Taisite-Platform.git
|
||||
|
||||
#### 1. Install python 3 env
|
||||
|
||||
#### 2. deploy NLP model
|
||||
|
||||
[Download model](https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip)
|
||||
|
||||
2.2 Extract the compression package
|
||||
|
||||
2.3 Install python dependent-packages
|
||||
|
||||
pip install tensorflow==1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
pip install bert-serving-server==1.9.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
|
||||
2.4 Start the model
|
||||
|
||||
// Execute after the current directory is switched to the model folder directory
|
||||
|
||||
bert-serving-start -model_dir ./chinese_L-12_H-768_A-12/ -num_worker=1
|
||||
|
||||
After the startup is successful, the output is as follows:
|
||||
|
||||

|
||||
|
||||
#### 3. Deploy Mongodb database
|
||||
|
||||
#### 4. Set system environment variables
|
||||
|
||||
AUTOTEST_PLATFORM_ENV=production
|
||||
AUTOTEST_PLATFORM_NLP_SERVER_HOST=127.0.0.1
|
||||
AUTOTEST_PLATFORM_MONGO_HOST=${MONGO_HOST}
|
||||
AUTOTEST_PLATFORM_MONGO_PORT=${MONGO_PORT}
|
||||
AUTOTEST_PLATFORM_MONGO_USERNAME=${USERNAME}
|
||||
AUTOTEST_PLATFORM_MONGO_PASSWORD=${PASSWORD}
|
||||
AUTOTEST_PLATFORM_MONGO_DEFAULT_DBNAME=taisite
|
||||
|
||||
Where AUTOTEST_PLATFORM_ENV defaults to production (required)
|
||||
|
||||
AUTOTEST_PLATFORM_MONGO_HOST and AUTOTEST_PLATFORM_MONGO_PORT indicate the address and port of the database (required)
|
||||
|
||||
AUTOTEST_PLATFORM_MONGO_USERNAME and AUTOTEST_PLATFORM_MONGO_PASSWORD represent the account password of the database (if not required)
|
||||
|
||||
AUTOTEST_PLATFORM_NLP_SERVER_HOST (Natural Language Model Service) defaults to native boot (not required)
|
||||
|
||||
AUTOTEST_PLATFORM_MONGO_DEFAULT_DBNAME is the default data table name (required)
|
||||
|
||||
After the setting is completed, you can test it with the following commands (CMD switches to the project root directory)
|
||||
|
||||
python ./backend/config.py
|
||||
|
||||
If the configuration is successful, you can see the input configuration data.
|
||||
|
||||
#### 5. Package the front-end dist file (I have done this for you, skip it if you don't need secondary development)
|
||||
|
||||
5.1 Install the Vue environment, download node.js and configure the environment, download the npm package manager
|
||||
|
||||
5.2 Cmd into the frontend directory, configure cnpm:
|
||||
|
||||
npm install -g cnpm --registry=https://registry.npm.taobao.org
|
||||
|
||||
5.3 Execute the install dependency package command:
|
||||
|
||||
cnpm install
|
||||
|
||||
5.4 Execute the package command:
|
||||
|
||||
cnpm run build
|
||||
|
||||
If successfully packaged, the dist folder will be generated in the project root directory.
|
||||
|
||||
#### 6. Start backend
|
||||
|
||||
// Switch to the project root directory to execute
|
||||
|
||||
pip install -r ./backend/requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
|
||||
// Start backend (default 5050 port)
|
||||
|
||||
python ./backend/run.py
|
||||
|
||||
// Create a platform administrator account password
|
||||
|
||||
python ./backend/createAdminUser.py
|
||||
|
||||
#### 7. Access project
|
||||
|
||||
You can now log in using http://127.0.0.1:5050/#/login using the created administrator account password.
|
||||
|
||||

|
||||
|
||||
### Docker containerized deployment in Linux environment
|
||||
|
||||
#### 0. Clone
|
||||
|
||||
git clone https://github.com/amazingTest/Taisite-Platform.git
|
||||
|
||||
#### 1. Natural language model deployment
|
||||
|
||||
sudo -i
|
||||
docker pull shaoyuyishiwo/bertserver
|
||||
docker run --name autotest-platform-bertserver -d shaoyuyishiwo/bertserver
|
||||
|
||||
|
||||
#### 2. Mongo database deployment (skip this step if an existing database is available)
|
||||
|
||||
2.1 Start database & data mount to host
|
||||
|
||||
sudo -i
|
||||
docker pull mongo
|
||||
docker run --name autotest-platform-mongo -p 27017:27017 -v /data/db:/data/db -v /data/configdb:/data/configdb ``-d mongo
|
||||
|
||||
2.2 Create a database account
|
||||
|
||||
docker exec -it autotest-platform-mongo /bin/bash
|
||||
|
||||
mongo
|
||||
|
||||
> use admin
|
||||
|
||||
switched to db admin
|
||||
|
||||
> db.createUser({user:"${USERNAME}",pwd:"${PASSWORD}",roles:["root"]})
|
||||
|
||||
Successfully added user: { "user" : "admin", "roles" : [ "root" ] }
|
||||
|
||||
2.3 Database memory expansion (recommended)
|
||||
|
||||
> db.adminCommand({setParameter:1, internalQueryExecMaxBlockingSortBytes:335544320})
|
||||
|
||||
{ "was" : 33554432, "ok" : 1 }
|
||||
|
||||
#### 3. Environment variable configuration
|
||||
|
||||
// Edit /etc/profile file
|
||||
|
||||
sudo -i
|
||||
vi /etc/profile
|
||||
|
||||
If there is a warning, select (E)dit anyway (enter E)
|
||||
|
||||
3.1 Insert the following data at the end of the text (enter i to get into insert status)
|
||||
|
||||
export AUTOTEST_PLATFORM_ENV=production
|
||||
export AUTOTEST_PLATFORM_NLP_SERVER_HOST=${BERT_IPADRESS}
|
||||
export AUTOTEST_PLATFORM_MONGO_HOST=${MONGO_HOST}
|
||||
export AUTOTEST_PLATFORM_MONGO_PORT=${MONGO_PORT}
|
||||
export AUTOTEST_PLATFORM_MONGO_USERNAME=${USERNAME}
|
||||
export AUTOTEST_PLATFORM_MONGO_PASSWORD=${PASSWORD}
|
||||
export AUTOTEST_PLATFORM_MONGO_DEFAULT_DBNAME=${DBNAME}
|
||||
|
||||
The variable is a dynamic value. The deployer can input it according to the actual situation.
|
||||
The DBNAME value can be arbitrarily customized (database table name). The BERT_IPADRESS and
|
||||
MONGO_HOST values can be queried by the following commands:
|
||||
|
||||
docker inspect autotest-platform-bertserver
|
||||
docker inspect autotest-platform-mongo // If you used the above steps to deploy the database
|
||||
|
||||
The output is shown below:
|
||||
|
||||

|
||||
|
||||
3.2 After inserting, click the ESC button, type :wq and click Enter to save.
|
||||
|
||||
3.3 Environment variables take effect immediately after executing the following command
|
||||
|
||||
source /etc/profile
|
||||
|
||||
#### 4. Start the project
|
||||
|
||||
Before you start the project, you need to change the timezone info by modifying the RUN script in **Dockerfile.backend** which stay
|
||||
in first-level directory of the project. The default timezone is Asia/Shanghai.
|
||||
|
||||
// Execute the deployment file in the project root directory
|
||||
|
||||
sh deploy ${PORT}
|
||||
|
||||
The ${PORT} variable fills in the project access port, and the administrator account password is also created when the
|
||||
project starts, as shown in the following figure:
|
||||
|
||||

|
||||
|
||||
#### 5. Access project
|
||||
|
||||
The browser can access the ${PORT} port of the deployment server address.
|
||||
|
||||

|
||||
|
||||
|
||||
#### EXTRA. FQA
|
||||
|
||||
The following output represents the NLP model startup failure
|
||||
|
||||

|
||||
|
||||
Solution steps:
|
||||
|
||||
1. Remove the code from ./backend/app/init.py:
|
||||
|
||||

|
||||
|
||||
2. Modify the following code in ./backend/testframe/interfaceTest/tester.py to pass:
|
||||
|
||||

|
||||
|
||||
When you start the project after you finish, you will not depend on the natural language model~
|
||||
[click me](https://shimo.im/docs/8TqxG3Ttjvj9yT8T)
|
||||
|
||||
## V . Contact me
|
||||
|
||||
|
||||
Reference in New Issue
Block a user