mirror of
https://gitee.com/infiniflow/ragflow.git
synced 2025-12-06 07:19:03 +08:00
### What problem does this PR solve? This Pull Request introduces native support for Google Cloud Storage (GCS) as an optional object storage backend. Currently, RAGFlow relies on a limited set of storage options. This feature addresses the need for seamless integration with GCP environments, allowing users to leverage a fully managed, highly durable, and scalable storage service (GCS) instead of needing to deploy and maintain third-party object storage solutions. This simplifies deployment, especially for users running on GCP infrastructure like GKE or Cloud Run. The implementation uses a single GCS bucket defined via configuration, mapping RAGFlow's internal logical storage units (or "buckets") to folder prefixes within that GCS container to maintain data separation. This architectural choice avoids the operational complexities associated with dynamically creating and managing unique GCS buckets for every logical unit. ### Type of change - [x] New Feature (non-breaking change which adds functionality)
345 lines
12 KiB
Python
345 lines
12 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import os
|
|
import json
|
|
import secrets
|
|
from datetime import date
|
|
import logging
|
|
from common.constants import RAG_FLOW_SERVICE_NAME
|
|
from common.file_utils import get_project_base_directory
|
|
from common.config_utils import get_base_config, decrypt_database_config
|
|
from common.misc_utils import pip_install_torch
|
|
from common.constants import SVR_QUEUE_NAME, Storage
|
|
|
|
import rag.utils
|
|
import rag.utils.es_conn
|
|
import rag.utils.infinity_conn
|
|
import rag.utils.ob_conn
|
|
import rag.utils.opensearch_conn
|
|
from rag.utils.azure_sas_conn import RAGFlowAzureSasBlob
|
|
from rag.utils.azure_spn_conn import RAGFlowAzureSpnBlob
|
|
from rag.utils.gcs_conn import RAGFlowGCS
|
|
from rag.utils.minio_conn import RAGFlowMinio
|
|
from rag.utils.opendal_conn import OpenDALStorage
|
|
from rag.utils.s3_conn import RAGFlowS3
|
|
from rag.utils.oss_conn import RAGFlowOSS
|
|
|
|
from rag.nlp import search
|
|
|
|
LLM = None
|
|
LLM_FACTORY = None
|
|
LLM_BASE_URL = None
|
|
CHAT_MDL = ""
|
|
EMBEDDING_MDL = ""
|
|
RERANK_MDL = ""
|
|
ASR_MDL = ""
|
|
IMAGE2TEXT_MDL = ""
|
|
|
|
|
|
CHAT_CFG = ""
|
|
EMBEDDING_CFG = ""
|
|
RERANK_CFG = ""
|
|
ASR_CFG = ""
|
|
IMAGE2TEXT_CFG = ""
|
|
API_KEY = None
|
|
PARSERS = None
|
|
HOST_IP = None
|
|
HOST_PORT = None
|
|
SECRET_KEY = None
|
|
FACTORY_LLM_INFOS = None
|
|
ALLOWED_LLM_FACTORIES = None
|
|
|
|
DATABASE_TYPE = os.getenv("DB_TYPE", "mysql")
|
|
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
|
|
|
|
# authentication
|
|
AUTHENTICATION_CONF = None
|
|
|
|
# client
|
|
CLIENT_AUTHENTICATION = None
|
|
HTTP_APP_KEY = None
|
|
GITHUB_OAUTH = None
|
|
FEISHU_OAUTH = None
|
|
OAUTH_CONFIG = None
|
|
DOC_ENGINE = os.getenv('DOC_ENGINE', 'elasticsearch')
|
|
DOC_ENGINE_INFINITY = (DOC_ENGINE.lower() == "infinity")
|
|
|
|
|
|
docStoreConn = None
|
|
|
|
retriever = None
|
|
kg_retriever = None
|
|
|
|
# user registration switch
|
|
REGISTER_ENABLED = 1
|
|
|
|
|
|
# sandbox-executor-manager
|
|
SANDBOX_HOST = None
|
|
STRONG_TEST_COUNT = int(os.environ.get("STRONG_TEST_COUNT", "8"))
|
|
|
|
SMTP_CONF = None
|
|
MAIL_SERVER = ""
|
|
MAIL_PORT = 000
|
|
MAIL_USE_SSL = True
|
|
MAIL_USE_TLS = False
|
|
MAIL_USERNAME = ""
|
|
MAIL_PASSWORD = ""
|
|
MAIL_DEFAULT_SENDER = ()
|
|
MAIL_FRONTEND_URL = ""
|
|
|
|
# move from rag.settings
|
|
ES = {}
|
|
INFINITY = {}
|
|
AZURE = {}
|
|
S3 = {}
|
|
MINIO = {}
|
|
OB = {}
|
|
OSS = {}
|
|
OS = {}
|
|
GCS = {}
|
|
|
|
DOC_MAXIMUM_SIZE: int = 128 * 1024 * 1024
|
|
DOC_BULK_SIZE: int = 4
|
|
EMBEDDING_BATCH_SIZE: int = 16
|
|
|
|
PARALLEL_DEVICES: int = 0
|
|
|
|
STORAGE_IMPL_TYPE = os.getenv('STORAGE_IMPL', 'MINIO')
|
|
STORAGE_IMPL = None
|
|
|
|
def get_svr_queue_name(priority: int) -> str:
|
|
if priority == 0:
|
|
return SVR_QUEUE_NAME
|
|
return f"{SVR_QUEUE_NAME}_{priority}"
|
|
|
|
def get_svr_queue_names():
|
|
return [get_svr_queue_name(priority) for priority in [1, 0]]
|
|
|
|
def _get_or_create_secret_key():
|
|
secret_key = os.environ.get("RAGFLOW_SECRET_KEY")
|
|
if secret_key and len(secret_key) >= 32:
|
|
return secret_key
|
|
|
|
# Check if there's a configured secret key
|
|
configured_key = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("secret_key")
|
|
if configured_key and configured_key != str(date.today()) and len(configured_key) >= 32:
|
|
return configured_key
|
|
|
|
# Generate a new secure key and warn about it
|
|
import logging
|
|
|
|
new_key = secrets.token_hex(32)
|
|
logging.warning("SECURITY WARNING: Using auto-generated SECRET_KEY.")
|
|
return new_key
|
|
|
|
class StorageFactory:
|
|
storage_mapping = {
|
|
Storage.MINIO: RAGFlowMinio,
|
|
Storage.AZURE_SPN: RAGFlowAzureSpnBlob,
|
|
Storage.AZURE_SAS: RAGFlowAzureSasBlob,
|
|
Storage.AWS_S3: RAGFlowS3,
|
|
Storage.OSS: RAGFlowOSS,
|
|
Storage.OPENDAL: OpenDALStorage,
|
|
Storage.GCS: RAGFlowGCS,
|
|
}
|
|
|
|
@classmethod
|
|
def create(cls, storage: Storage):
|
|
return cls.storage_mapping[storage]()
|
|
|
|
|
|
def init_settings():
|
|
global DATABASE_TYPE, DATABASE
|
|
DATABASE_TYPE = os.getenv("DB_TYPE", "mysql")
|
|
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
|
|
|
|
global ALLOWED_LLM_FACTORIES, LLM_FACTORY, LLM_BASE_URL
|
|
llm_settings = get_base_config("user_default_llm", {}) or {}
|
|
llm_default_models = llm_settings.get("default_models", {}) or {}
|
|
LLM_FACTORY = llm_settings.get("factory", "") or ""
|
|
LLM_BASE_URL = llm_settings.get("base_url", "") or ""
|
|
ALLOWED_LLM_FACTORIES = llm_settings.get("allowed_factories", None)
|
|
|
|
global REGISTER_ENABLED
|
|
try:
|
|
REGISTER_ENABLED = int(os.environ.get("REGISTER_ENABLED", "1"))
|
|
except Exception:
|
|
pass
|
|
|
|
global FACTORY_LLM_INFOS
|
|
try:
|
|
with open(os.path.join(get_project_base_directory(), "conf", "llm_factories.json"), "r") as f:
|
|
FACTORY_LLM_INFOS = json.load(f)["factory_llm_infos"]
|
|
except Exception:
|
|
FACTORY_LLM_INFOS = []
|
|
|
|
global API_KEY
|
|
API_KEY = llm_settings.get("api_key")
|
|
|
|
global PARSERS
|
|
PARSERS = llm_settings.get(
|
|
"parsers", "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag"
|
|
)
|
|
|
|
global CHAT_MDL, EMBEDDING_MDL, RERANK_MDL, ASR_MDL, IMAGE2TEXT_MDL
|
|
chat_entry = _parse_model_entry(llm_default_models.get("chat_model", CHAT_MDL))
|
|
embedding_entry = _parse_model_entry(llm_default_models.get("embedding_model", EMBEDDING_MDL))
|
|
rerank_entry = _parse_model_entry(llm_default_models.get("rerank_model", RERANK_MDL))
|
|
asr_entry = _parse_model_entry(llm_default_models.get("asr_model", ASR_MDL))
|
|
image2text_entry = _parse_model_entry(llm_default_models.get("image2text_model", IMAGE2TEXT_MDL))
|
|
|
|
global CHAT_CFG, EMBEDDING_CFG, RERANK_CFG, ASR_CFG, IMAGE2TEXT_CFG
|
|
CHAT_CFG = _resolve_per_model_config(chat_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
|
|
EMBEDDING_CFG = _resolve_per_model_config(embedding_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
|
|
RERANK_CFG = _resolve_per_model_config(rerank_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
|
|
ASR_CFG = _resolve_per_model_config(asr_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
|
|
IMAGE2TEXT_CFG = _resolve_per_model_config(image2text_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
|
|
|
|
CHAT_MDL = CHAT_CFG.get("model", "") or ""
|
|
EMBEDDING_MDL = os.getenv("TEI_MODEL", "BAAI/bge-small-en-v1.5") if "tei-" in os.getenv("COMPOSE_PROFILES", "") else ""
|
|
RERANK_MDL = RERANK_CFG.get("model", "") or ""
|
|
ASR_MDL = ASR_CFG.get("model", "") or ""
|
|
IMAGE2TEXT_MDL = IMAGE2TEXT_CFG.get("model", "") or ""
|
|
|
|
global HOST_IP, HOST_PORT
|
|
HOST_IP = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("host", "127.0.0.1")
|
|
HOST_PORT = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("http_port")
|
|
|
|
global SECRET_KEY
|
|
SECRET_KEY = _get_or_create_secret_key()
|
|
|
|
|
|
# authentication
|
|
authentication_conf = get_base_config("authentication", {})
|
|
|
|
global CLIENT_AUTHENTICATION, HTTP_APP_KEY, GITHUB_OAUTH, FEISHU_OAUTH, OAUTH_CONFIG
|
|
# client
|
|
CLIENT_AUTHENTICATION = authentication_conf.get("client", {}).get("switch", False)
|
|
HTTP_APP_KEY = authentication_conf.get("client", {}).get("http_app_key")
|
|
GITHUB_OAUTH = get_base_config("oauth", {}).get("github")
|
|
FEISHU_OAUTH = get_base_config("oauth", {}).get("feishu")
|
|
OAUTH_CONFIG = get_base_config("oauth", {})
|
|
|
|
global DOC_ENGINE, DOC_ENGINE_INFINITY, docStoreConn, ES, OB, OS, INFINITY
|
|
DOC_ENGINE = os.environ.get("DOC_ENGINE", "elasticsearch")
|
|
DOC_ENGINE_INFINITY = (DOC_ENGINE.lower() == "infinity")
|
|
lower_case_doc_engine = DOC_ENGINE.lower()
|
|
if lower_case_doc_engine == "elasticsearch":
|
|
ES = get_base_config("es", {})
|
|
docStoreConn = rag.utils.es_conn.ESConnection()
|
|
elif lower_case_doc_engine == "infinity":
|
|
INFINITY = get_base_config("infinity", {"uri": "infinity:23817"})
|
|
docStoreConn = rag.utils.infinity_conn.InfinityConnection()
|
|
elif lower_case_doc_engine == "opensearch":
|
|
OS = get_base_config("os", {})
|
|
docStoreConn = rag.utils.opensearch_conn.OSConnection()
|
|
elif lower_case_doc_engine == "oceanbase":
|
|
OB = get_base_config("oceanbase", {})
|
|
docStoreConn = rag.utils.ob_conn.OBConnection()
|
|
else:
|
|
raise Exception(f"Not supported doc engine: {DOC_ENGINE}")
|
|
|
|
global AZURE, S3, MINIO, OSS, GCS
|
|
if STORAGE_IMPL_TYPE in ['AZURE_SPN', 'AZURE_SAS']:
|
|
AZURE = get_base_config("azure", {})
|
|
elif STORAGE_IMPL_TYPE == 'AWS_S3':
|
|
S3 = get_base_config("s3", {})
|
|
elif STORAGE_IMPL_TYPE == 'MINIO':
|
|
MINIO = decrypt_database_config(name="minio")
|
|
elif STORAGE_IMPL_TYPE == 'OSS':
|
|
OSS = get_base_config("oss", {})
|
|
elif STORAGE_IMPL_TYPE == 'GCS':
|
|
GCS = get_base_config("gcs", {})
|
|
|
|
global STORAGE_IMPL
|
|
STORAGE_IMPL = StorageFactory.create(Storage[STORAGE_IMPL_TYPE])
|
|
|
|
global retriever, kg_retriever
|
|
retriever = search.Dealer(docStoreConn)
|
|
from graphrag import search as kg_search
|
|
|
|
kg_retriever = kg_search.KGSearch(docStoreConn)
|
|
|
|
global SANDBOX_HOST
|
|
if int(os.environ.get("SANDBOX_ENABLED", "0")):
|
|
SANDBOX_HOST = os.environ.get("SANDBOX_HOST", "sandbox-executor-manager")
|
|
|
|
global SMTP_CONF
|
|
SMTP_CONF = get_base_config("smtp", {})
|
|
|
|
global MAIL_SERVER, MAIL_PORT, MAIL_USE_SSL, MAIL_USE_TLS, MAIL_USERNAME, MAIL_PASSWORD, MAIL_DEFAULT_SENDER, MAIL_FRONTEND_URL
|
|
MAIL_SERVER = SMTP_CONF.get("mail_server", "")
|
|
MAIL_PORT = SMTP_CONF.get("mail_port", 000)
|
|
MAIL_USE_SSL = SMTP_CONF.get("mail_use_ssl", True)
|
|
MAIL_USE_TLS = SMTP_CONF.get("mail_use_tls", False)
|
|
MAIL_USERNAME = SMTP_CONF.get("mail_username", "")
|
|
MAIL_PASSWORD = SMTP_CONF.get("mail_password", "")
|
|
mail_default_sender = SMTP_CONF.get("mail_default_sender", [])
|
|
if mail_default_sender and len(mail_default_sender) >= 2:
|
|
MAIL_DEFAULT_SENDER = (mail_default_sender[0], mail_default_sender[1])
|
|
MAIL_FRONTEND_URL = SMTP_CONF.get("mail_frontend_url", "")
|
|
|
|
global DOC_MAXIMUM_SIZE, DOC_BULK_SIZE, EMBEDDING_BATCH_SIZE
|
|
DOC_MAXIMUM_SIZE = int(os.environ.get("MAX_CONTENT_LENGTH", 128 * 1024 * 1024))
|
|
DOC_BULK_SIZE = int(os.environ.get("DOC_BULK_SIZE", 4))
|
|
EMBEDDING_BATCH_SIZE = int(os.environ.get("EMBEDDING_BATCH_SIZE", 16))
|
|
|
|
def check_and_install_torch():
|
|
global PARALLEL_DEVICES
|
|
try:
|
|
pip_install_torch()
|
|
import torch.cuda
|
|
PARALLEL_DEVICES = torch.cuda.device_count()
|
|
logging.info(f"found {PARALLEL_DEVICES} gpus")
|
|
except Exception:
|
|
logging.info("can't import package 'torch'")
|
|
|
|
def _parse_model_entry(entry):
|
|
if isinstance(entry, str):
|
|
return {"name": entry, "factory": None, "api_key": None, "base_url": None}
|
|
if isinstance(entry, dict):
|
|
name = entry.get("name") or entry.get("model") or ""
|
|
return {
|
|
"name": name,
|
|
"factory": entry.get("factory"),
|
|
"api_key": entry.get("api_key"),
|
|
"base_url": entry.get("base_url"),
|
|
}
|
|
return {"name": "", "factory": None, "api_key": None, "base_url": None}
|
|
|
|
|
|
def _resolve_per_model_config(entry_dict, backup_factory, backup_api_key, backup_base_url):
|
|
name = (entry_dict.get("name") or "").strip()
|
|
m_factory = entry_dict.get("factory") or backup_factory or ""
|
|
m_api_key = entry_dict.get("api_key") or backup_api_key or ""
|
|
m_base_url = entry_dict.get("base_url") or backup_base_url or ""
|
|
|
|
if name and "@" not in name and m_factory:
|
|
name = f"{name}@{m_factory}"
|
|
|
|
return {
|
|
"model": name,
|
|
"factory": m_factory,
|
|
"api_key": m_api_key,
|
|
"base_url": m_base_url,
|
|
}
|
|
|
|
def print_rag_settings():
|
|
logging.info(f"MAX_CONTENT_LENGTH: {DOC_MAXIMUM_SIZE}")
|
|
logging.info(f"MAX_FILE_COUNT_PER_USER: {int(os.environ.get('MAX_FILE_NUM_PER_USER', 0))}")
|
|
|