mirror of
https://gitee.com/infiniflow/ragflow.git
synced 2025-12-06 15:29:03 +08:00
### What problem does this PR solve? Try to make this more asynchronous. Verified in chat and agent scenarios, reducing blocking behavior. #11551, #11579. However, the impact of these changes still requires further investigation to ensure everything works as expected. ### Type of change - [x] Refactoring
374 lines
16 KiB
Python
374 lines
16 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import logging
|
|
import json
|
|
import os
|
|
from quart import request
|
|
|
|
from api.apps import login_required, current_user
|
|
from api.db.services.tenant_llm_service import LLMFactoriesService, TenantLLMService
|
|
from api.db.services.llm_service import LLMService
|
|
from api.utils.api_utils import get_allowed_llm_factories, get_data_error_result, get_json_result, get_request_json, server_error_response, validate_request
|
|
from common.constants import StatusEnum, LLMType
|
|
from api.db.db_models import TenantLLM
|
|
from rag.utils.base64_image import test_image
|
|
from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
|
|
|
|
|
|
@manager.route("/factories", methods=["GET"]) # noqa: F821
|
|
@login_required
|
|
def factories():
|
|
try:
|
|
fac = get_allowed_llm_factories()
|
|
fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI", "Builtin"]]
|
|
llms = LLMService.get_all()
|
|
mdl_types = {}
|
|
for m in llms:
|
|
if m.status != StatusEnum.VALID.value:
|
|
continue
|
|
if m.fid not in mdl_types:
|
|
mdl_types[m.fid] = set([])
|
|
mdl_types[m.fid].add(m.model_type)
|
|
for f in fac:
|
|
f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK, LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
|
|
return get_json_result(data=fac)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route("/set_api_key", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("llm_factory", "api_key")
|
|
async def set_api_key():
|
|
req = await get_request_json()
|
|
# test if api key works
|
|
chat_passed, embd_passed, rerank_passed = False, False, False
|
|
factory = req["llm_factory"]
|
|
extra = {"provider": factory}
|
|
msg = ""
|
|
for llm in LLMService.query(fid=factory):
|
|
if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
|
|
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
|
|
mdl = EmbeddingModel[factory](req["api_key"], llm.llm_name, base_url=req.get("base_url"))
|
|
try:
|
|
arr, tc = mdl.encode(["Test if the api key is available"])
|
|
if len(arr[0]) == 0:
|
|
raise Exception("Fail")
|
|
embd_passed = True
|
|
except Exception as e:
|
|
msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
|
|
elif not chat_passed and llm.model_type == LLMType.CHAT.value:
|
|
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
|
|
mdl = ChatModel[factory](req["api_key"], llm.llm_name, base_url=req.get("base_url"), **extra)
|
|
try:
|
|
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {"temperature": 0.9, "max_tokens": 50})
|
|
if m.find("**ERROR**") >= 0:
|
|
raise Exception(m)
|
|
chat_passed = True
|
|
except Exception as e:
|
|
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(e)
|
|
elif not rerank_passed and llm.model_type == LLMType.RERANK:
|
|
assert factory in RerankModel, f"Re-rank model from {factory} is not supported yet."
|
|
mdl = RerankModel[factory](req["api_key"], llm.llm_name, base_url=req.get("base_url"))
|
|
try:
|
|
arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
|
|
if len(arr) == 0 or tc == 0:
|
|
raise Exception("Fail")
|
|
rerank_passed = True
|
|
logging.debug(f"passed model rerank {llm.llm_name}")
|
|
except Exception as e:
|
|
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(e)
|
|
if any([embd_passed, chat_passed, rerank_passed]):
|
|
msg = ""
|
|
break
|
|
|
|
if msg:
|
|
return get_data_error_result(message=msg)
|
|
|
|
llm_config = {"api_key": req["api_key"], "api_base": req.get("base_url", "")}
|
|
for n in ["model_type", "llm_name"]:
|
|
if n in req:
|
|
llm_config[n] = req[n]
|
|
|
|
for llm in LLMService.query(fid=factory):
|
|
llm_config["max_tokens"] = llm.max_tokens
|
|
if not TenantLLMService.filter_update([TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm.llm_name], llm_config):
|
|
TenantLLMService.save(
|
|
tenant_id=current_user.id,
|
|
llm_factory=factory,
|
|
llm_name=llm.llm_name,
|
|
model_type=llm.model_type,
|
|
api_key=llm_config["api_key"],
|
|
api_base=llm_config["api_base"],
|
|
max_tokens=llm_config["max_tokens"],
|
|
)
|
|
|
|
return get_json_result(data=True)
|
|
|
|
|
|
@manager.route("/add_llm", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("llm_factory")
|
|
async def add_llm():
|
|
req = await get_request_json()
|
|
factory = req["llm_factory"]
|
|
api_key = req.get("api_key", "x")
|
|
llm_name = req.get("llm_name")
|
|
|
|
if factory not in [f.name for f in get_allowed_llm_factories()]:
|
|
return get_data_error_result(message=f"LLM factory {factory} is not allowed")
|
|
|
|
def apikey_json(keys):
|
|
nonlocal req
|
|
return json.dumps({k: req.get(k, "") for k in keys})
|
|
|
|
if factory == "VolcEngine":
|
|
# For VolcEngine, due to its special authentication method
|
|
# Assemble ark_api_key endpoint_id into api_key
|
|
api_key = apikey_json(["ark_api_key", "endpoint_id"])
|
|
|
|
elif factory == "Tencent Hunyuan":
|
|
req["api_key"] = apikey_json(["hunyuan_sid", "hunyuan_sk"])
|
|
return await set_api_key()
|
|
|
|
elif factory == "Tencent Cloud":
|
|
req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
|
|
return await set_api_key()
|
|
|
|
elif factory == "Bedrock":
|
|
# For Bedrock, due to its special authentication method
|
|
# Assemble bedrock_ak, bedrock_sk, bedrock_region
|
|
api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
|
|
|
|
elif factory == "LocalAI":
|
|
llm_name += "___LocalAI"
|
|
|
|
elif factory == "HuggingFace":
|
|
llm_name += "___HuggingFace"
|
|
|
|
elif factory == "OpenAI-API-Compatible":
|
|
llm_name += "___OpenAI-API"
|
|
|
|
elif factory == "VLLM":
|
|
llm_name += "___VLLM"
|
|
|
|
elif factory == "XunFei Spark":
|
|
if req["model_type"] == "chat":
|
|
api_key = req.get("spark_api_password", "")
|
|
elif req["model_type"] == "tts":
|
|
api_key = apikey_json(["spark_app_id", "spark_api_secret", "spark_api_key"])
|
|
|
|
elif factory == "BaiduYiyan":
|
|
api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
|
|
|
|
elif factory == "Fish Audio":
|
|
api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
|
|
|
|
elif factory == "Google Cloud":
|
|
api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
|
|
|
|
elif factory == "Azure-OpenAI":
|
|
api_key = apikey_json(["api_key", "api_version"])
|
|
|
|
elif factory == "OpenRouter":
|
|
api_key = apikey_json(["api_key", "provider_order"])
|
|
|
|
llm = {
|
|
"tenant_id": current_user.id,
|
|
"llm_factory": factory,
|
|
"model_type": req["model_type"],
|
|
"llm_name": llm_name,
|
|
"api_base": req.get("api_base", ""),
|
|
"api_key": api_key,
|
|
"max_tokens": req.get("max_tokens"),
|
|
}
|
|
|
|
msg = ""
|
|
mdl_nm = llm["llm_name"].split("___")[0]
|
|
extra = {"provider": factory}
|
|
if llm["model_type"] == LLMType.EMBEDDING.value:
|
|
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
|
|
mdl = EmbeddingModel[factory](key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"])
|
|
try:
|
|
arr, tc = mdl.encode(["Test if the api key is available"])
|
|
if len(arr[0]) == 0:
|
|
raise Exception("Fail")
|
|
except Exception as e:
|
|
msg += f"\nFail to access embedding model({mdl_nm})." + str(e)
|
|
elif llm["model_type"] == LLMType.CHAT.value:
|
|
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
|
|
mdl = ChatModel[factory](
|
|
key=llm["api_key"],
|
|
model_name=mdl_nm,
|
|
base_url=llm["api_base"],
|
|
**extra,
|
|
)
|
|
try:
|
|
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {"temperature": 0.9})
|
|
if not tc and m.find("**ERROR**:") >= 0:
|
|
raise Exception(m)
|
|
except Exception as e:
|
|
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
|
|
elif llm["model_type"] == LLMType.RERANK:
|
|
assert factory in RerankModel, f"RE-rank model from {factory} is not supported yet."
|
|
try:
|
|
mdl = RerankModel[factory](key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"])
|
|
arr, tc = mdl.similarity("Hello~ RAGFlower!", ["Hi, there!", "Ohh, my friend!"])
|
|
if len(arr) == 0:
|
|
raise Exception("Not known.")
|
|
except KeyError:
|
|
msg += f"{factory} dose not support this model({factory}/{mdl_nm})"
|
|
except Exception as e:
|
|
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
|
|
elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
|
|
assert factory in CvModel, f"Image to text model from {factory} is not supported yet."
|
|
mdl = CvModel[factory](key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"])
|
|
try:
|
|
image_data = test_image
|
|
m, tc = mdl.describe(image_data)
|
|
if not tc and m.find("**ERROR**:") >= 0:
|
|
raise Exception(m)
|
|
except Exception as e:
|
|
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
|
|
elif llm["model_type"] == LLMType.TTS:
|
|
assert factory in TTSModel, f"TTS model from {factory} is not supported yet."
|
|
mdl = TTSModel[factory](key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"])
|
|
try:
|
|
for resp in mdl.tts("Hello~ RAGFlower!"):
|
|
pass
|
|
except RuntimeError as e:
|
|
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
|
|
else:
|
|
# TODO: check other type of models
|
|
pass
|
|
|
|
if msg:
|
|
return get_data_error_result(message=msg)
|
|
|
|
if not TenantLLMService.filter_update([TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm["llm_name"]], llm):
|
|
TenantLLMService.save(**llm)
|
|
|
|
return get_json_result(data=True)
|
|
|
|
|
|
@manager.route("/delete_llm", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("llm_factory", "llm_name")
|
|
async def delete_llm():
|
|
req = await get_request_json()
|
|
TenantLLMService.filter_delete([TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]])
|
|
return get_json_result(data=True)
|
|
|
|
|
|
@manager.route("/enable_llm", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("llm_factory", "llm_name")
|
|
async def enable_llm():
|
|
req = await get_request_json()
|
|
TenantLLMService.filter_update(
|
|
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]], {"status": str(req.get("status", "1"))}
|
|
)
|
|
return get_json_result(data=True)
|
|
|
|
|
|
@manager.route("/delete_factory", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("llm_factory")
|
|
async def delete_factory():
|
|
req = await get_request_json()
|
|
TenantLLMService.filter_delete([TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
|
|
return get_json_result(data=True)
|
|
|
|
|
|
@manager.route("/my_llms", methods=["GET"]) # noqa: F821
|
|
@login_required
|
|
def my_llms():
|
|
try:
|
|
include_details = request.args.get("include_details", "false").lower() == "true"
|
|
|
|
if include_details:
|
|
res = {}
|
|
objs = TenantLLMService.query(tenant_id=current_user.id)
|
|
factories = LLMFactoriesService.query(status=StatusEnum.VALID.value)
|
|
|
|
for o in objs:
|
|
o_dict = o.to_dict()
|
|
factory_tags = None
|
|
for f in factories:
|
|
if f.name == o_dict["llm_factory"]:
|
|
factory_tags = f.tags
|
|
break
|
|
|
|
if o_dict["llm_factory"] not in res:
|
|
res[o_dict["llm_factory"]] = {"tags": factory_tags, "llm": []}
|
|
|
|
res[o_dict["llm_factory"]]["llm"].append(
|
|
{
|
|
"type": o_dict["model_type"],
|
|
"name": o_dict["llm_name"],
|
|
"used_token": o_dict["used_tokens"],
|
|
"api_base": o_dict["api_base"] or "",
|
|
"max_tokens": o_dict["max_tokens"] or 8192,
|
|
"status": o_dict["status"] or "1",
|
|
}
|
|
)
|
|
else:
|
|
res = {}
|
|
for o in TenantLLMService.get_my_llms(current_user.id):
|
|
if o["llm_factory"] not in res:
|
|
res[o["llm_factory"]] = {"tags": o["tags"], "llm": []}
|
|
res[o["llm_factory"]]["llm"].append({"type": o["model_type"], "name": o["llm_name"], "used_token": o["used_tokens"], "status": o["status"]})
|
|
|
|
return get_json_result(data=res)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route("/list", methods=["GET"]) # noqa: F821
|
|
@login_required
|
|
def list_app():
|
|
self_deployed = ["FastEmbed", "Ollama", "Xinference", "LocalAI", "LM-Studio", "GPUStack"]
|
|
weighted = []
|
|
model_type = request.args.get("model_type")
|
|
try:
|
|
objs = TenantLLMService.query(tenant_id=current_user.id)
|
|
facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key and o.status == StatusEnum.VALID.value])
|
|
status = {(o.llm_name + "@" + o.llm_factory) for o in objs if o.status == StatusEnum.VALID.value}
|
|
llms = LLMService.get_all()
|
|
llms = [m.to_dict() for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted and (m.fid == 'Builtin' or (m.llm_name + "@" + m.fid) in status)]
|
|
for m in llms:
|
|
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deployed
|
|
if "tei-" in os.getenv("COMPOSE_PROFILES", "") and m["model_type"] == LLMType.EMBEDDING and m["fid"] == "Builtin" and m["llm_name"] == os.getenv("TEI_MODEL", ""):
|
|
m["available"] = True
|
|
|
|
llm_set = set([m["llm_name"] + "@" + m["fid"] for m in llms])
|
|
for o in objs:
|
|
if o.llm_name + "@" + o.llm_factory in llm_set:
|
|
continue
|
|
llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True, "status": StatusEnum.VALID.value})
|
|
|
|
res = {}
|
|
for m in llms:
|
|
if model_type and m["model_type"].find(model_type) < 0:
|
|
continue
|
|
if m["fid"] not in res:
|
|
res[m["fid"]] = []
|
|
res[m["fid"]].append(m)
|
|
|
|
return get_json_result(data=res)
|
|
except Exception as e:
|
|
return server_error_response(e)
|