Files
ragflow/api/apps/kb_app.py
Yongteng Lei e3f40db963 Refa: make RAGFlow more asynchronous 2 (#11689)
### What problem does this PR solve?

Make RAGFlow more asynchronous 2. #11551, #11579, #11619.

### Type of change

- [x] Refactoring
- [x] Performance Improvement
2025-12-03 14:19:53 +08:00

939 lines
35 KiB
Python

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import logging
import random
import re
import asyncio
from quart import request
import numpy as np
from api.db.services.connector_service import Connector2KbService
from api.db.services.llm_service import LLMBundle
from api.db.services.document_service import DocumentService, queue_raptor_o_graphrag_tasks
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.pipeline_operation_log_service import PipelineOperationLogService
from api.db.services.task_service import TaskService, GRAPH_RAPTOR_FAKE_DOC_ID
from api.db.services.user_service import TenantService, UserTenantService
from api.utils.api_utils import get_error_data_result, server_error_response, get_data_error_result, validate_request, not_allowed_parameters, \
get_request_json
from api.db import VALID_FILE_TYPES
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.db_models import File
from api.utils.api_utils import get_json_result
from rag.nlp import search
from api.constants import DATASET_NAME_LIMIT
from rag.utils.redis_conn import REDIS_CONN
from rag.utils.doc_store_conn import OrderByExpr
from common.constants import RetCode, PipelineTaskType, StatusEnum, VALID_TASK_STATUS, FileSource, LLMType, PAGERANK_FLD
from common import settings
from api.apps import login_required, current_user
@manager.route('/create', methods=['post']) # noqa: F821
@login_required
@validate_request("name")
async def create():
req = await get_request_json()
e, res = KnowledgebaseService.create_with_name(
name = req.pop("name", None),
tenant_id = current_user.id,
parser_id = req.pop("parser_id", None),
**req
)
if not e:
return res
try:
if not KnowledgebaseService.save(**res):
return get_data_error_result()
return get_json_result(data={"kb_id":res["id"]})
except Exception as e:
return server_error_response(e)
@manager.route('/update', methods=['post']) # noqa: F821
@login_required
@validate_request("kb_id", "name", "description", "parser_id")
@not_allowed_parameters("id", "tenant_id", "created_by", "create_time", "update_time", "create_date", "update_date", "created_by")
async def update():
req = await get_request_json()
if not isinstance(req["name"], str):
return get_data_error_result(message="Dataset name must be string.")
if req["name"].strip() == "":
return get_data_error_result(message="Dataset name can't be empty.")
if len(req["name"].encode("utf-8")) > DATASET_NAME_LIMIT:
return get_data_error_result(
message=f"Dataset name length is {len(req['name'])} which is large than {DATASET_NAME_LIMIT}")
req["name"] = req["name"].strip()
if not KnowledgebaseService.accessible4deletion(req["kb_id"], current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=RetCode.AUTHENTICATION_ERROR
)
try:
if not KnowledgebaseService.query(
created_by=current_user.id, id=req["kb_id"]):
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(req["kb_id"])
if not e:
return get_data_error_result(
message="Can't find this knowledgebase!")
if req["name"].lower() != kb.name.lower() \
and len(
KnowledgebaseService.query(name=req["name"], tenant_id=current_user.id, status=StatusEnum.VALID.value)) >= 1:
return get_data_error_result(
message="Duplicated knowledgebase name.")
del req["kb_id"]
connectors = []
if "connectors" in req:
connectors = req["connectors"]
del req["connectors"]
if not KnowledgebaseService.update_by_id(kb.id, req):
return get_data_error_result()
if kb.pagerank != req.get("pagerank", 0):
if req.get("pagerank", 0) > 0:
await asyncio.to_thread(
settings.docStoreConn.update,
{"kb_id": kb.id},
{PAGERANK_FLD: req["pagerank"]},
search.index_name(kb.tenant_id),
kb.id,
)
else:
# Elasticsearch requires PAGERANK_FLD be non-zero!
await asyncio.to_thread(
settings.docStoreConn.update,
{"exists": PAGERANK_FLD},
{"remove": PAGERANK_FLD},
search.index_name(kb.tenant_id),
kb.id,
)
e, kb = KnowledgebaseService.get_by_id(kb.id)
if not e:
return get_data_error_result(
message="Database error (Knowledgebase rename)!")
errors = Connector2KbService.link_connectors(kb.id, [conn for conn in connectors], current_user.id)
if errors:
logging.error("Link KB errors: ", errors)
kb = kb.to_dict()
kb.update(req)
kb["connectors"] = connectors
return get_json_result(data=kb)
except Exception as e:
return server_error_response(e)
@manager.route('/detail', methods=['GET']) # noqa: F821
@login_required
def detail():
kb_id = request.args["kb_id"]
try:
tenants = UserTenantService.query(user_id=current_user.id)
for tenant in tenants:
if KnowledgebaseService.query(
tenant_id=tenant.tenant_id, id=kb_id):
break
else:
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=RetCode.OPERATING_ERROR)
kb = KnowledgebaseService.get_detail(kb_id)
if not kb:
return get_data_error_result(
message="Can't find this knowledgebase!")
kb["size"] = DocumentService.get_total_size_by_kb_id(kb_id=kb["id"],keywords="", run_status=[], types=[])
kb["connectors"] = Connector2KbService.list_connectors(kb_id)
for key in ["graphrag_task_finish_at", "raptor_task_finish_at", "mindmap_task_finish_at"]:
if finish_at := kb.get(key):
kb[key] = finish_at.strftime("%Y-%m-%d %H:%M:%S")
return get_json_result(data=kb)
except Exception as e:
return server_error_response(e)
@manager.route('/list', methods=['POST']) # noqa: F821
@login_required
async def list_kbs():
args = request.args
keywords = args.get("keywords", "")
page_number = int(args.get("page", 0))
items_per_page = int(args.get("page_size", 0))
parser_id = args.get("parser_id")
orderby = args.get("orderby", "create_time")
if args.get("desc", "true").lower() == "false":
desc = False
else:
desc = True
req = await get_request_json()
owner_ids = req.get("owner_ids", [])
try:
if not owner_ids:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
tenants = [m["tenant_id"] for m in tenants]
kbs, total = KnowledgebaseService.get_by_tenant_ids(
tenants, current_user.id, page_number,
items_per_page, orderby, desc, keywords, parser_id)
else:
tenants = owner_ids
kbs, total = KnowledgebaseService.get_by_tenant_ids(
tenants, current_user.id, 0,
0, orderby, desc, keywords, parser_id)
kbs = [kb for kb in kbs if kb["tenant_id"] in tenants]
total = len(kbs)
if page_number and items_per_page:
kbs = kbs[(page_number-1)*items_per_page:page_number*items_per_page]
return get_json_result(data={"kbs": kbs, "total": total})
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['post']) # noqa: F821
@login_required
@validate_request("kb_id")
async def rm():
req = await get_request_json()
if not KnowledgebaseService.accessible4deletion(req["kb_id"], current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=RetCode.AUTHENTICATION_ERROR
)
try:
kbs = KnowledgebaseService.query(
created_by=current_user.id, id=req["kb_id"])
if not kbs:
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=RetCode.OPERATING_ERROR)
def _rm_sync():
for doc in DocumentService.query(kb_id=req["kb_id"]):
if not DocumentService.remove_document(doc, kbs[0].tenant_id):
return get_data_error_result(
message="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc.id)
if f2d:
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc.id)
FileService.filter_delete(
[File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kbs[0].name])
if not KnowledgebaseService.delete_by_id(req["kb_id"]):
return get_data_error_result(
message="Database error (Knowledgebase removal)!")
for kb in kbs:
settings.docStoreConn.delete({"kb_id": kb.id}, search.index_name(kb.tenant_id), kb.id)
settings.docStoreConn.deleteIdx(search.index_name(kb.tenant_id), kb.id)
if hasattr(settings.STORAGE_IMPL, 'remove_bucket'):
settings.STORAGE_IMPL.remove_bucket(kb.id)
return get_json_result(data=True)
return await asyncio.to_thread(_rm_sync)
except Exception as e:
return server_error_response(e)
@manager.route('/<kb_id>/tags', methods=['GET']) # noqa: F821
@login_required
def list_tags(kb_id):
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=RetCode.AUTHENTICATION_ERROR
)
tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
tags = []
for tenant in tenants:
tags += settings.retriever.all_tags(tenant["tenant_id"], [kb_id])
return get_json_result(data=tags)
@manager.route('/tags', methods=['GET']) # noqa: F821
@login_required
def list_tags_from_kbs():
kb_ids = request.args.get("kb_ids", "").split(",")
for kb_id in kb_ids:
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=RetCode.AUTHENTICATION_ERROR
)
tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
tags = []
for tenant in tenants:
tags += settings.retriever.all_tags(tenant["tenant_id"], kb_ids)
return get_json_result(data=tags)
@manager.route('/<kb_id>/rm_tags', methods=['POST']) # noqa: F821
@login_required
async def rm_tags(kb_id):
req = await get_request_json()
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=RetCode.AUTHENTICATION_ERROR
)
e, kb = KnowledgebaseService.get_by_id(kb_id)
for t in req["tags"]:
settings.docStoreConn.update({"tag_kwd": t, "kb_id": [kb_id]},
{"remove": {"tag_kwd": t}},
search.index_name(kb.tenant_id),
kb_id)
return get_json_result(data=True)
@manager.route('/<kb_id>/rename_tag', methods=['POST']) # noqa: F821
@login_required
async def rename_tags(kb_id):
req = await get_request_json()
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=RetCode.AUTHENTICATION_ERROR
)
e, kb = KnowledgebaseService.get_by_id(kb_id)
settings.docStoreConn.update({"tag_kwd": req["from_tag"], "kb_id": [kb_id]},
{"remove": {"tag_kwd": req["from_tag"].strip()}, "add": {"tag_kwd": req["to_tag"]}},
search.index_name(kb.tenant_id),
kb_id)
return get_json_result(data=True)
@manager.route('/<kb_id>/knowledge_graph', methods=['GET']) # noqa: F821
@login_required
def knowledge_graph(kb_id):
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=RetCode.AUTHENTICATION_ERROR
)
_, kb = KnowledgebaseService.get_by_id(kb_id)
req = {
"kb_id": [kb_id],
"knowledge_graph_kwd": ["graph"]
}
obj = {"graph": {}, "mind_map": {}}
if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), kb_id):
return get_json_result(data=obj)
sres = settings.retriever.search(req, search.index_name(kb.tenant_id), [kb_id])
if not len(sres.ids):
return get_json_result(data=obj)
for id in sres.ids[:1]:
ty = sres.field[id]["knowledge_graph_kwd"]
try:
content_json = json.loads(sres.field[id]["content_with_weight"])
except Exception:
continue
obj[ty] = content_json
if "nodes" in obj["graph"]:
obj["graph"]["nodes"] = sorted(obj["graph"]["nodes"], key=lambda x: x.get("pagerank", 0), reverse=True)[:256]
if "edges" in obj["graph"]:
node_id_set = { o["id"] for o in obj["graph"]["nodes"] }
filtered_edges = [o for o in obj["graph"]["edges"] if o["source"] != o["target"] and o["source"] in node_id_set and o["target"] in node_id_set]
obj["graph"]["edges"] = sorted(filtered_edges, key=lambda x: x.get("weight", 0), reverse=True)[:128]
return get_json_result(data=obj)
@manager.route('/<kb_id>/knowledge_graph', methods=['DELETE']) # noqa: F821
@login_required
def delete_knowledge_graph(kb_id):
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=RetCode.AUTHENTICATION_ERROR
)
_, kb = KnowledgebaseService.get_by_id(kb_id)
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
return get_json_result(data=True)
@manager.route("/get_meta", methods=["GET"]) # noqa: F821
@login_required
def get_meta():
kb_ids = request.args.get("kb_ids", "").split(",")
for kb_id in kb_ids:
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=DocumentService.get_meta_by_kbs(kb_ids))
@manager.route("/basic_info", methods=["GET"]) # noqa: F821
@login_required
def get_basic_info():
kb_id = request.args.get("kb_id", "")
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=RetCode.AUTHENTICATION_ERROR
)
basic_info = DocumentService.knowledgebase_basic_info(kb_id)
return get_json_result(data=basic_info)
@manager.route("/list_pipeline_logs", methods=["POST"]) # noqa: F821
@login_required
async def list_pipeline_logs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=RetCode.ARGUMENT_ERROR)
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 0))
items_per_page = int(request.args.get("page_size", 0))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc", "true").lower() == "false":
desc = False
else:
desc = True
create_date_from = request.args.get("create_date_from", "")
create_date_to = request.args.get("create_date_to", "")
if create_date_to > create_date_from:
return get_data_error_result(message="Create data filter is abnormal.")
req = await get_request_json()
operation_status = req.get("operation_status", [])
if operation_status:
invalid_status = {s for s in operation_status if s not in VALID_TASK_STATUS}
if invalid_status:
return get_data_error_result(message=f"Invalid filter operation_status status conditions: {', '.join(invalid_status)}")
types = req.get("types", [])
if types:
invalid_types = {t for t in types if t not in VALID_FILE_TYPES}
if invalid_types:
return get_data_error_result(message=f"Invalid filter conditions: {', '.join(invalid_types)} type{'s' if len(invalid_types) > 1 else ''}")
suffix = req.get("suffix", [])
try:
logs, tol = PipelineOperationLogService.get_file_logs_by_kb_id(kb_id, page_number, items_per_page, orderby, desc, keywords, operation_status, types, suffix, create_date_from, create_date_to)
return get_json_result(data={"total": tol, "logs": logs})
except Exception as e:
return server_error_response(e)
@manager.route("/list_pipeline_dataset_logs", methods=["POST"]) # noqa: F821
@login_required
async def list_pipeline_dataset_logs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=RetCode.ARGUMENT_ERROR)
page_number = int(request.args.get("page", 0))
items_per_page = int(request.args.get("page_size", 0))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc", "true").lower() == "false":
desc = False
else:
desc = True
create_date_from = request.args.get("create_date_from", "")
create_date_to = request.args.get("create_date_to", "")
if create_date_to > create_date_from:
return get_data_error_result(message="Create data filter is abnormal.")
req = await get_request_json()
operation_status = req.get("operation_status", [])
if operation_status:
invalid_status = {s for s in operation_status if s not in VALID_TASK_STATUS}
if invalid_status:
return get_data_error_result(message=f"Invalid filter operation_status status conditions: {', '.join(invalid_status)}")
try:
logs, tol = PipelineOperationLogService.get_dataset_logs_by_kb_id(kb_id, page_number, items_per_page, orderby, desc, operation_status, create_date_from, create_date_to)
return get_json_result(data={"total": tol, "logs": logs})
except Exception as e:
return server_error_response(e)
@manager.route("/delete_pipeline_logs", methods=["POST"]) # noqa: F821
@login_required
async def delete_pipeline_logs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=RetCode.ARGUMENT_ERROR)
req = await get_request_json()
log_ids = req.get("log_ids", [])
PipelineOperationLogService.delete_by_ids(log_ids)
return get_json_result(data=True)
@manager.route("/pipeline_log_detail", methods=["GET"]) # noqa: F821
@login_required
def pipeline_log_detail():
log_id = request.args.get("log_id")
if not log_id:
return get_json_result(data=False, message='Lack of "Pipeline log ID"', code=RetCode.ARGUMENT_ERROR)
ok, log = PipelineOperationLogService.get_by_id(log_id)
if not ok:
return get_data_error_result(message="Invalid pipeline log ID")
return get_json_result(data=log.to_dict())
@manager.route("/run_graphrag", methods=["POST"]) # noqa: F821
@login_required
async def run_graphrag():
req = await get_request_json()
kb_id = req.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.graphrag_task_id
if task_id:
ok, task = TaskService.get_by_id(task_id)
if not ok:
logging.warning(f"A valid GraphRAG task id is expected for kb {kb_id}")
if task and task.progress not in [-1, 1]:
return get_error_data_result(message=f"Task {task_id} in progress with status {task.progress}. A Graph Task is already running.")
documents, _ = DocumentService.get_by_kb_id(
kb_id=kb_id,
page_number=0,
items_per_page=0,
orderby="create_time",
desc=False,
keywords="",
run_status=[],
types=[],
suffix=[],
)
if not documents:
return get_error_data_result(message=f"No documents in Knowledgebase {kb_id}")
sample_document = documents[0]
document_ids = [document["id"] for document in documents]
task_id = queue_raptor_o_graphrag_tasks(sample_doc_id=sample_document, ty="graphrag", priority=0, fake_doc_id=GRAPH_RAPTOR_FAKE_DOC_ID, doc_ids=list(document_ids))
if not KnowledgebaseService.update_by_id(kb.id, {"graphrag_task_id": task_id}):
logging.warning(f"Cannot save graphrag_task_id for kb {kb_id}")
return get_json_result(data={"graphrag_task_id": task_id})
@manager.route("/trace_graphrag", methods=["GET"]) # noqa: F821
@login_required
def trace_graphrag():
kb_id = request.args.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.graphrag_task_id
if not task_id:
return get_json_result(data={})
ok, task = TaskService.get_by_id(task_id)
if not ok:
return get_json_result(data={})
return get_json_result(data=task.to_dict())
@manager.route("/run_raptor", methods=["POST"]) # noqa: F821
@login_required
async def run_raptor():
req = await get_request_json()
kb_id = req.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.raptor_task_id
if task_id:
ok, task = TaskService.get_by_id(task_id)
if not ok:
logging.warning(f"A valid RAPTOR task id is expected for kb {kb_id}")
if task and task.progress not in [-1, 1]:
return get_error_data_result(message=f"Task {task_id} in progress with status {task.progress}. A RAPTOR Task is already running.")
documents, _ = DocumentService.get_by_kb_id(
kb_id=kb_id,
page_number=0,
items_per_page=0,
orderby="create_time",
desc=False,
keywords="",
run_status=[],
types=[],
suffix=[],
)
if not documents:
return get_error_data_result(message=f"No documents in Knowledgebase {kb_id}")
sample_document = documents[0]
document_ids = [document["id"] for document in documents]
task_id = queue_raptor_o_graphrag_tasks(sample_doc_id=sample_document, ty="raptor", priority=0, fake_doc_id=GRAPH_RAPTOR_FAKE_DOC_ID, doc_ids=list(document_ids))
if not KnowledgebaseService.update_by_id(kb.id, {"raptor_task_id": task_id}):
logging.warning(f"Cannot save raptor_task_id for kb {kb_id}")
return get_json_result(data={"raptor_task_id": task_id})
@manager.route("/trace_raptor", methods=["GET"]) # noqa: F821
@login_required
def trace_raptor():
kb_id = request.args.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.raptor_task_id
if not task_id:
return get_json_result(data={})
ok, task = TaskService.get_by_id(task_id)
if not ok:
return get_error_data_result(message="RAPTOR Task Not Found or Error Occurred")
return get_json_result(data=task.to_dict())
@manager.route("/run_mindmap", methods=["POST"]) # noqa: F821
@login_required
async def run_mindmap():
req = await get_request_json()
kb_id = req.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.mindmap_task_id
if task_id:
ok, task = TaskService.get_by_id(task_id)
if not ok:
logging.warning(f"A valid Mindmap task id is expected for kb {kb_id}")
if task and task.progress not in [-1, 1]:
return get_error_data_result(message=f"Task {task_id} in progress with status {task.progress}. A Mindmap Task is already running.")
documents, _ = DocumentService.get_by_kb_id(
kb_id=kb_id,
page_number=0,
items_per_page=0,
orderby="create_time",
desc=False,
keywords="",
run_status=[],
types=[],
suffix=[],
)
if not documents:
return get_error_data_result(message=f"No documents in Knowledgebase {kb_id}")
sample_document = documents[0]
document_ids = [document["id"] for document in documents]
task_id = queue_raptor_o_graphrag_tasks(sample_doc_id=sample_document, ty="mindmap", priority=0, fake_doc_id=GRAPH_RAPTOR_FAKE_DOC_ID, doc_ids=list(document_ids))
if not KnowledgebaseService.update_by_id(kb.id, {"mindmap_task_id": task_id}):
logging.warning(f"Cannot save mindmap_task_id for kb {kb_id}")
return get_json_result(data={"mindmap_task_id": task_id})
@manager.route("/trace_mindmap", methods=["GET"]) # noqa: F821
@login_required
def trace_mindmap():
kb_id = request.args.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.mindmap_task_id
if not task_id:
return get_json_result(data={})
ok, task = TaskService.get_by_id(task_id)
if not ok:
return get_error_data_result(message="Mindmap Task Not Found or Error Occurred")
return get_json_result(data=task.to_dict())
@manager.route("/unbind_task", methods=["DELETE"]) # noqa: F821
@login_required
def delete_kb_task():
kb_id = request.args.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_json_result(data=True)
pipeline_task_type = request.args.get("pipeline_task_type", "")
if not pipeline_task_type or pipeline_task_type not in [PipelineTaskType.GRAPH_RAG, PipelineTaskType.RAPTOR, PipelineTaskType.MINDMAP]:
return get_error_data_result(message="Invalid task type")
def cancel_task(task_id):
REDIS_CONN.set(f"{task_id}-cancel", "x")
kb_task_id_field: str = ""
kb_task_finish_at: str = ""
match pipeline_task_type:
case PipelineTaskType.GRAPH_RAG:
kb_task_id_field = "graphrag_task_id"
task_id = kb.graphrag_task_id
kb_task_finish_at = "graphrag_task_finish_at"
cancel_task(task_id)
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
case PipelineTaskType.RAPTOR:
kb_task_id_field = "raptor_task_id"
task_id = kb.raptor_task_id
kb_task_finish_at = "raptor_task_finish_at"
cancel_task(task_id)
settings.docStoreConn.delete({"raptor_kwd": ["raptor"]}, search.index_name(kb.tenant_id), kb_id)
case PipelineTaskType.MINDMAP:
kb_task_id_field = "mindmap_task_id"
task_id = kb.mindmap_task_id
kb_task_finish_at = "mindmap_task_finish_at"
cancel_task(task_id)
case _:
return get_error_data_result(message="Internal Error: Invalid task type")
ok = KnowledgebaseService.update_by_id(kb_id, {kb_task_id_field: "", kb_task_finish_at: None})
if not ok:
return server_error_response(f"Internal error: cannot delete task {pipeline_task_type}")
return get_json_result(data=True)
@manager.route("/check_embedding", methods=["post"]) # noqa: F821
@login_required
async def check_embedding():
def _guess_vec_field(src: dict) -> str | None:
for k in src or {}:
if k.endswith("_vec"):
return k
return None
def _as_float_vec(v):
if v is None:
return []
if isinstance(v, str):
return [float(x) for x in v.split("\t") if x != ""]
if isinstance(v, (list, tuple, np.ndarray)):
return [float(x) for x in v]
return []
def _to_1d(x):
a = np.asarray(x, dtype=np.float32)
return a.reshape(-1)
def _cos_sim(a, b, eps=1e-12):
a = _to_1d(a)
b = _to_1d(b)
na = np.linalg.norm(a)
nb = np.linalg.norm(b)
if na < eps or nb < eps:
return 0.0
return float(np.dot(a, b) / (na * nb))
def sample_random_chunks_with_vectors(
docStoreConn,
tenant_id: str,
kb_id: str,
n: int = 5,
base_fields=("docnm_kwd","doc_id","content_with_weight","page_num_int","position_int","top_int"),
):
index_nm = search.index_name(tenant_id)
res0 = docStoreConn.search(
selectFields=[], highlightFields=[],
condition={"kb_id": kb_id, "available_int": 1},
matchExprs=[], orderBy=OrderByExpr(),
offset=0, limit=1,
indexNames=index_nm, knowledgebaseIds=[kb_id]
)
total = docStoreConn.get_total(res0)
if total <= 0:
return []
n = min(n, total)
offsets = sorted(random.sample(range(min(total,1000)), n))
out = []
for off in offsets:
res1 = docStoreConn.search(
selectFields=list(base_fields),
highlightFields=[],
condition={"kb_id": kb_id, "available_int": 1},
matchExprs=[], orderBy=OrderByExpr(),
offset=off, limit=1,
indexNames=index_nm, knowledgebaseIds=[kb_id]
)
ids = docStoreConn.get_chunk_ids(res1)
if not ids:
continue
cid = ids[0]
full_doc = docStoreConn.get(cid, index_nm, [kb_id]) or {}
vec_field = _guess_vec_field(full_doc)
vec = _as_float_vec(full_doc.get(vec_field))
out.append({
"chunk_id": cid,
"kb_id": kb_id,
"doc_id": full_doc.get("doc_id"),
"doc_name": full_doc.get("docnm_kwd"),
"vector_field": vec_field,
"vector_dim": len(vec),
"vector": vec,
"page_num_int": full_doc.get("page_num_int"),
"position_int": full_doc.get("position_int"),
"top_int": full_doc.get("top_int"),
"content_with_weight": full_doc.get("content_with_weight") or "",
"question_kwd": full_doc.get("question_kwd") or []
})
return out
def _clean(s: str) -> str:
s = re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", s or "")
return s if s else "None"
req = await get_request_json()
kb_id = req.get("kb_id", "")
embd_id = req.get("embd_id", "")
n = int(req.get("check_num", 5))
_, kb = KnowledgebaseService.get_by_id(kb_id)
tenant_id = kb.tenant_id
emb_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
samples = sample_random_chunks_with_vectors(settings.docStoreConn, tenant_id=tenant_id, kb_id=kb_id, n=n)
results, eff_sims = [], []
for ck in samples:
title = ck.get("doc_name") or "Title"
txt_in = "\n".join(ck.get("question_kwd") or []) or ck.get("content_with_weight") or ""
txt_in = _clean(txt_in)
if not txt_in:
results.append({"chunk_id": ck["chunk_id"], "reason": "no_text"})
continue
if not ck.get("vector"):
results.append({"chunk_id": ck["chunk_id"], "reason": "no_stored_vector"})
continue
try:
v, _ = emb_mdl.encode([title, txt_in])
assert len(v[1]) == len(ck["vector"]), f"The dimension ({len(v[1])}) of given embedding model is different from the original ({len(ck['vector'])})"
sim_content = _cos_sim(v[1], ck["vector"])
title_w = 0.1
qv_mix = title_w * v[0] + (1 - title_w) * v[1]
sim_mix = _cos_sim(qv_mix, ck["vector"])
sim = sim_content
mode = "content_only"
if sim_mix > sim:
sim = sim_mix
mode = "title+content"
except Exception as e:
return get_error_data_result(message=f"Embedding failure. {e}")
eff_sims.append(sim)
results.append({
"chunk_id": ck["chunk_id"],
"doc_id": ck["doc_id"],
"doc_name": ck["doc_name"],
"vector_field": ck["vector_field"],
"vector_dim": ck["vector_dim"],
"cos_sim": round(sim, 6),
})
summary = {
"kb_id": kb_id,
"model": embd_id,
"sampled": len(samples),
"valid": len(eff_sims),
"avg_cos_sim": round(float(np.mean(eff_sims)) if eff_sims else 0.0, 6),
"min_cos_sim": round(float(np.min(eff_sims)) if eff_sims else 0.0, 6),
"max_cos_sim": round(float(np.max(eff_sims)) if eff_sims else 0.0, 6),
"match_mode": mode,
}
if summary["avg_cos_sim"] > 0.9:
return get_json_result(data={"summary": summary, "results": results})
return get_json_result(code=RetCode.NOT_EFFECTIVE, message="Embedding model switch failed: the average similarity between old and new vectors is below 0.9, indicating incompatible vector spaces.", data={"summary": summary, "results": results})