Files
ragflow/api/apps/chunk_app.py
Yongteng Lei e3f40db963 Refa: make RAGFlow more asynchronous 2 (#11689)
### What problem does this PR solve?

Make RAGFlow more asynchronous 2. #11551, #11579, #11619.

### Type of change

- [x] Refactoring
- [x] Performance Improvement
2025-12-03 14:19:53 +08:00

437 lines
18 KiB
Python

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import asyncio
import datetime
import json
import re
import xxhash
from quart import request
from api.db.services.dialog_service import meta_filter
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.search_service import SearchService
from api.db.services.user_service import UserTenantService
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request, \
get_request_json
from rag.app.qa import beAdoc, rmPrefix
from rag.app.tag import label_question
from rag.nlp import rag_tokenizer, search
from rag.prompts.generator import gen_meta_filter, cross_languages, keyword_extraction
from common.string_utils import remove_redundant_spaces
from common.constants import RetCode, LLMType, ParserType, PAGERANK_FLD
from common import settings
from api.apps import login_required, current_user
@manager.route('/list', methods=['POST']) # noqa: F821
@login_required
@validate_request("doc_id")
async def list_chunk():
req = await get_request_json()
doc_id = req["doc_id"]
page = int(req.get("page", 1))
size = int(req.get("size", 30))
question = req.get("keywords", "")
try:
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_data_error_result(message="Document not found!")
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
query = {
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
}
if "available_int" in req:
query["available_int"] = int(req["available_int"])
sres = settings.retriever.search(query, search.index_name(tenant_id), kb_ids, highlight=["content_ltks"])
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
for id in sres.ids:
d = {
"chunk_id": id,
"content_with_weight": remove_redundant_spaces(sres.highlight[id]) if question and id in sres.highlight else sres.field[
id].get(
"content_with_weight", ""),
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],
"important_kwd": sres.field[id].get("important_kwd", []),
"question_kwd": sres.field[id].get("question_kwd", []),
"image_id": sres.field[id].get("img_id", ""),
"available_int": int(sres.field[id].get("available_int", 1)),
"positions": sres.field[id].get("position_int", []),
}
assert isinstance(d["positions"], list)
assert len(d["positions"]) == 0 or (isinstance(d["positions"][0], list) and len(d["positions"][0]) == 5)
res["chunks"].append(d)
return get_json_result(data=res)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, message='No chunk found!',
code=RetCode.DATA_ERROR)
return server_error_response(e)
@manager.route('/get', methods=['GET']) # noqa: F821
@login_required
def get():
chunk_id = request.args["chunk_id"]
try:
chunk = None
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(message="Tenant not found!")
for tenant in tenants:
kb_ids = KnowledgebaseService.get_kb_ids(tenant.tenant_id)
chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant.tenant_id), kb_ids)
if chunk:
break
if chunk is None:
return server_error_response(Exception("Chunk not found"))
k = []
for n in chunk.keys():
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
k.append(n)
for n in k:
del chunk[n]
return get_json_result(data=chunk)
except Exception as e:
if str(e).find("NotFoundError") >= 0:
return get_json_result(data=False, message='Chunk not found!',
code=RetCode.DATA_ERROR)
return server_error_response(e)
@manager.route('/set', methods=['POST']) # noqa: F821
@login_required
@validate_request("doc_id", "chunk_id", "content_with_weight")
async def set():
req = await get_request_json()
d = {
"id": req["chunk_id"],
"content_with_weight": req["content_with_weight"]}
d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
if "important_kwd" in req:
if not isinstance(req["important_kwd"], list):
return get_data_error_result(message="`important_kwd` should be a list")
d["important_kwd"] = req["important_kwd"]
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
if "question_kwd" in req:
if not isinstance(req["question_kwd"], list):
return get_data_error_result(message="`question_kwd` should be a list")
d["question_kwd"] = req["question_kwd"]
d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
if "tag_kwd" in req:
d["tag_kwd"] = req["tag_kwd"]
if "tag_feas" in req:
d["tag_feas"] = req["tag_feas"]
if "available_int" in req:
d["available_int"] = req["available_int"]
try:
def _set_sync():
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
_d = d
if doc.parser_id == ParserType.QA:
arr = [
t for t in re.split(
r"[\n\t]",
req["content_with_weight"]) if len(t) > 1]
q, a = rmPrefix(arr[0]), rmPrefix("\n".join(arr[1:]))
_d = beAdoc(d, q, a, not any(
[rag_tokenizer.is_chinese(t) for t in q + a]))
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not _d.get("question_kwd") else "\n".join(_d["question_kwd"])])
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
_d["q_%d_vec" % len(v)] = v.tolist()
settings.docStoreConn.update({"id": req["chunk_id"]}, _d, search.index_name(tenant_id), doc.kb_id)
return get_json_result(data=True)
return await asyncio.to_thread(_set_sync)
except Exception as e:
return server_error_response(e)
@manager.route('/switch', methods=['POST']) # noqa: F821
@login_required
@validate_request("chunk_ids", "available_int", "doc_id")
async def switch():
req = await get_request_json()
try:
def _switch_sync():
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
for cid in req["chunk_ids"]:
if not settings.docStoreConn.update({"id": cid},
{"available_int": int(req["available_int"])},
search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
doc.kb_id):
return get_data_error_result(message="Index updating failure")
return get_json_result(data=True)
return await asyncio.to_thread(_switch_sync)
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['POST']) # noqa: F821
@login_required
@validate_request("chunk_ids", "doc_id")
async def rm():
req = await get_request_json()
try:
def _rm_sync():
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if not settings.docStoreConn.delete({"id": req["chunk_ids"]},
search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
doc.kb_id):
return get_data_error_result(message="Chunk deleting failure")
deleted_chunk_ids = req["chunk_ids"]
chunk_number = len(deleted_chunk_ids)
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
for cid in deleted_chunk_ids:
if settings.STORAGE_IMPL.obj_exist(doc.kb_id, cid):
settings.STORAGE_IMPL.rm(doc.kb_id, cid)
return get_json_result(data=True)
return await asyncio.to_thread(_rm_sync)
except Exception as e:
return server_error_response(e)
@manager.route('/create', methods=['POST']) # noqa: F821
@login_required
@validate_request("doc_id", "content_with_weight")
async def create():
req = await get_request_json()
chunck_id = xxhash.xxh64((req["content_with_weight"] + req["doc_id"]).encode("utf-8")).hexdigest()
d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]),
"content_with_weight": req["content_with_weight"]}
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
d["important_kwd"] = req.get("important_kwd", [])
if not isinstance(d["important_kwd"], list):
return get_data_error_result(message="`important_kwd` is required to be a list")
d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
d["question_kwd"] = req.get("question_kwd", [])
if not isinstance(d["question_kwd"], list):
return get_data_error_result(message="`question_kwd` is required to be a list")
d["question_tks"] = rag_tokenizer.tokenize("\n".join(d["question_kwd"]))
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
if "tag_feas" in req:
d["tag_feas"] = req["tag_feas"]
if "tag_feas" in req:
d["tag_feas"] = req["tag_feas"]
try:
def _create_sync():
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
d["kb_id"] = [doc.kb_id]
d["docnm_kwd"] = doc.name
d["title_tks"] = rag_tokenizer.tokenize(doc.name)
d["doc_id"] = doc.id
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
if not e:
return get_data_error_result(message="Knowledgebase not found!")
if kb.pagerank:
d[PAGERANK_FLD] = kb.pagerank
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec" % len(v)] = v.tolist()
settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
DocumentService.increment_chunk_num(
doc.id, doc.kb_id, c, 1, 0)
return get_json_result(data={"chunk_id": chunck_id})
return await asyncio.to_thread(_create_sync)
except Exception as e:
return server_error_response(e)
@manager.route('/retrieval_test', methods=['POST']) # noqa: F821
@login_required
@validate_request("kb_id", "question")
async def retrieval_test():
req = await get_request_json()
page = int(req.get("page", 1))
size = int(req.get("size", 30))
question = req["question"]
kb_ids = req["kb_id"]
if isinstance(kb_ids, str):
kb_ids = [kb_ids]
if not kb_ids:
return get_json_result(data=False, message='Please specify dataset firstly.',
code=RetCode.DATA_ERROR)
doc_ids = req.get("doc_ids", [])
use_kg = req.get("use_kg", False)
top = int(req.get("top_k", 1024))
langs = req.get("cross_languages", [])
user_id = current_user.id
def _retrieval_sync():
local_doc_ids = list(doc_ids) if doc_ids else []
tenant_ids = []
if req.get("search_id", ""):
search_config = SearchService.get_detail(req.get("search_id", "")).get("search_config", {})
meta_data_filter = search_config.get("meta_data_filter", {})
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
chat_mdl = LLMBundle(user_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
filters: dict = gen_meta_filter(chat_mdl, metas, question)
local_doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
if not local_doc_ids:
local_doc_ids = None
elif meta_data_filter.get("method") == "manual":
local_doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
if meta_data_filter["manual"] and not local_doc_ids:
local_doc_ids = ["-999"]
tenants = UserTenantService.query(user_id=user_id)
for kb_id in kb_ids:
for tenant in tenants:
if KnowledgebaseService.query(
tenant_id=tenant.tenant_id, id=kb_id):
tenant_ids.append(tenant.tenant_id)
break
else:
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_data_error_result(message="Knowledgebase not found!")
_question = question
if langs:
_question = cross_languages(kb.tenant_id, None, _question, langs)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
rerank_mdl = None
if req.get("rerank_id"):
rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
_question += keyword_extraction(chat_mdl, _question)
labels = label_question(_question, [kb])
ranks = settings.retriever.retrieval(_question, embd_mdl, tenant_ids, kb_ids, page, size,
float(req.get("similarity_threshold", 0.0)),
float(req.get("vector_similarity_weight", 0.3)),
top,
local_doc_ids, rerank_mdl=rerank_mdl,
highlight=req.get("highlight", False),
rank_feature=labels
)
if use_kg:
ck = settings.kg_retriever.retrieval(_question,
tenant_ids,
kb_ids,
embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)
for c in ranks["chunks"]:
c.pop("vector", None)
ranks["labels"] = labels
return get_json_result(data=ranks)
try:
return await asyncio.to_thread(_retrieval_sync)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
code=RetCode.DATA_ERROR)
return server_error_response(e)
@manager.route('/knowledge_graph', methods=['GET']) # noqa: F821
@login_required
def knowledge_graph():
doc_id = request.args["doc_id"]
tenant_id = DocumentService.get_tenant_id(doc_id)
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
req = {
"doc_ids": [doc_id],
"knowledge_graph_kwd": ["graph", "mind_map"]
}
sres = settings.retriever.search(req, search.index_name(tenant_id), kb_ids)
obj = {"graph": {}, "mind_map": {}}
for id in sres.ids[:2]:
ty = sres.field[id]["knowledge_graph_kwd"]
try:
content_json = json.loads(sres.field[id]["content_with_weight"])
except Exception:
continue
if ty == 'mind_map':
node_dict = {}
def repeat_deal(content_json, node_dict):
if 'id' in content_json:
if content_json['id'] in node_dict:
node_name = content_json['id']
content_json['id'] += f"({node_dict[content_json['id']]})"
node_dict[node_name] += 1
else:
node_dict[content_json['id']] = 1
if 'children' in content_json and content_json['children']:
for item in content_json['children']:
repeat_deal(item, node_dict)
repeat_deal(content_json, node_dict)
obj[ty] = content_json
return get_json_result(data=obj)