Files
mindformers/convert_weight.py
2025-12-01 10:03:43 +08:00

114 lines
4.2 KiB
Python

# Copyright 2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""convert weight."""
import argparse
import copy
import importlib
import torch
import mindspore as ms
from mindformers.tools.utils import str2bool
dtype_map = {
'fp32': ms.float32,
'bf16': ms.bfloat16,
'fp16': ms.float16
}
reversed_dtype_map = {
'fp32': torch.float32,
'bf16': torch.bfloat16,
'fp16': torch.float16
}
convert_map = {
'llama': 'mindformers.models.llama.convert_weight.convert_pt_to_ms',
'qwen2_5': 'research.qwen2_5.convert_weight.convert_weight',
'glm-n': 'mindformers.models.glm2.convert_weight.convert_weight',
'telechat': 'research.telechat.convert_weight.convert_pt_to_ms',
'deepseekv3': 'toolkit.weight_convert.deepseekv3.convert_deepseekv3_hf_weight.convert_weight'
}
reversed_convert_map = {
'llama': 'mindformers.models.llama.convert_reversed.convert_ms_to_pt',
'glm-n': 'mindformers.models.glm2.convert_reversed.convert_ms_to_pt',
'telechat': 'research.telechat.convert_reversed.convert_ms_to_pt',
'deepseekv3': 'toolkit.weight_convert.deepseekv3.reverse_mcore_deepseekv3_weight_to_hf.reverse_weight',
'qwen3': 'toolkit.weight_convert.qwen3.reverse_mcore_qwen3_weight_to_hf.reverse_weight',
'qwen3-moe': 'toolkit.weight_convert.qwen3_moe.reverse_mcore_qwen3_moe_weight_to_hf.reverse_weight'
}
def main(args_list=None):
parser = argparse.ArgumentParser()
parser.add_argument('--model', default=None, type=str, required=True, help='model name')
parser.add_argument('--reversed', action='store_true', help="convert ms to hf")
parser.add_argument('--input_path', default=None, type=str, required=True)
parser.add_argument('--output_path', default=None, type=str, required=True)
parser.add_argument('--dtype', default=None, type=str, required=False)
parser.add_argument('--qkv_concat', default=False, type=str2bool, required=False)
parser.add_argument('--telechat_type', default="telechat_12b", type=str, required=False,
help="Only for telechat. Telechat version.")
parser.add_argument('--is_lora', default=False, type=str2bool, required=False)
if args_list is not None:
args, extra_args = parser.parse_known_args(args_list)
else:
args, extra_args = parser.parse_known_args()
extra_args = [i
for item in extra_args
for i in item.split("=")]
extra_kwargs = copy.copy(vars(args))
extra_kwargs.pop('model')
extra_kwargs.pop('reversed')
extra_kwargs.pop('input_path')
extra_kwargs.pop('output_path')
extra_kwargs.pop('dtype')
while extra_args:
key = extra_args.pop(0)
value = extra_args.pop(0)
if not key.startswith("--"):
raise ValueError("Custom config key need to start with --.")
extra_kwargs[key[2:]] = value
if args.model in ["glm4"]:
args.model = "glm-n"
if args.reversed:
module_func = reversed_convert_map.get(args.model)
dtype = reversed_dtype_map.get(args.dtype)
else:
module_func = convert_map.get(args.model)
dtype = dtype_map.get(args.dtype)
if not module_func:
raise ValueError(f"Model:{args.model} is not supported!\nSupported Models:{','.join(convert_map.keys())}.")
if args.dtype and not dtype:
raise ValueError(f"Dtype:{args.dtype} is not supported!\nSupported Models:{','.join(dtype_map.keys())}.\n")
model_name, func_name = module_func.rsplit('.', 1)
convert_func = getattr(importlib.import_module(model_name), func_name)
merged_args = argparse.Namespace(**{**vars(args), **extra_kwargs})
convert_func(merged_args)
if __name__ == '__main__':
main()