mirror of
https://gitee.com/chfenger/goNum.git
synced 2025-12-06 16:49:24 +08:00
update comments in all of files in convenient to generate package information using `godoc` command or give tips in LiteIDE editor when the cursor keeps resting on a function or method.
86 lines
2.1 KiB
Go
86 lines
2.1 KiB
Go
// SimpleIterate
|
||
/*
|
||
------------------------------------------------------
|
||
作者 : Black Ghost
|
||
日期 : 2018-11-01
|
||
版本 : 0.0.0
|
||
------------------------------------------------------
|
||
简单迭代求解类x=g(x)方程的解 xn+1=g(xn)
|
||
理论:
|
||
1. g(x)在区间[a, b]可导;
|
||
2. 当xE[a, b],g(x)E[a, b];
|
||
3. 对于任意xE[a, b],|g‘(x)| <= L < 1
|
||
线性收敛
|
||
|
||
则求解所得的根xn与真实根xr的的误差:
|
||
L^n
|
||
|xn-xr| <= ----- |x1-x0|
|
||
1-L
|
||
------------------------------------------------------
|
||
输入 :
|
||
fn g(x)函数,定义为等式右侧部分,左侧为x
|
||
a, b 求解区间
|
||
c 求解初值
|
||
N 步数上限
|
||
tol 误差上限
|
||
输出 :
|
||
sol 解值
|
||
err 解出标志:false-未解出或达到步数上限;
|
||
true-全部解出
|
||
------------------------------------------------------
|
||
*/
|
||
|
||
package goNum
|
||
|
||
import (
|
||
"math"
|
||
)
|
||
|
||
// SimpleIterate 简单迭代求解类x=g(x)方程的解 xn+1=g(xn)
|
||
func SimpleIterate(fn func(float64) float64, a, b, c float64,
|
||
N int, tol float64) (float64, bool) {
|
||
/*
|
||
简单迭代求解类x=g(x)方程的解 xn+1=g(xn)
|
||
输入 :
|
||
fn g(x)函数,定义为等式右侧部分,左侧为x
|
||
a, b 求解区间
|
||
c 求解初值
|
||
N 步数上限
|
||
tol 误差上限
|
||
输出 :
|
||
sol 解值
|
||
err 解出标志:false-未解出或达到步数上限;
|
||
true-全部解出
|
||
*/
|
||
var sol float64
|
||
var err bool = false
|
||
|
||
// 判断端点和初值是否为所求之解
|
||
switch {
|
||
case math.Abs(fn(a)-a) < tol:
|
||
sol = a
|
||
err = true
|
||
return sol, err
|
||
case math.Abs(fn(b)-b) < tol:
|
||
sol = b
|
||
err = true
|
||
return sol, err
|
||
case math.Abs(fn(c)-c) < tol:
|
||
sol = c
|
||
err = true
|
||
return sol, err
|
||
}
|
||
|
||
//求解
|
||
sol = fn(c)
|
||
for i := 0; i < N; i++ {
|
||
if (math.Abs(sol - c)) < tol {
|
||
err = true
|
||
return sol, err
|
||
}
|
||
c = sol
|
||
sol = fn(c)
|
||
}
|
||
return sol, err
|
||
}
|