mirror of
https://gitee.com/chfenger/goNum.git
synced 2025-12-06 16:49:24 +08:00
update comments in all of files in convenient to generate package information using `godoc` command or give tips in LiteIDE editor when the cursor keeps resting on a function or method.
105 lines
2.5 KiB
Go
105 lines
2.5 KiB
Go
// OptimizeGS_test
|
||
/*
|
||
------------------------------------------------------
|
||
作者 : Black Ghost
|
||
日期 : 2018-12-24
|
||
版本 : 0.0.0
|
||
------------------------------------------------------
|
||
黄金分割法(Golden Section)求单峰单自变量极小值
|
||
理论:
|
||
对于在区间[a, b]内有定义的凹函数f(x),取黄金分割点:
|
||
c = a+(1-r)(b-a)
|
||
d = b-(1-r)(b-a)
|
||
其中r为黄金分割比例(Sqrt(5)-1)/2
|
||
|
||
如果f(c) <= f(d),则将d赋予b,继续迭代;
|
||
如果f(c) > f(d),则将c赋予a,继续迭代。
|
||
迭代终止条件为Abs(f(a)-f(b)) < tol,取小值(c或d)
|
||
|
||
参考:John H. Mathews and Kurtis D. Fink. Numerical
|
||
methods using MATLAB, 4th ed. Pearson
|
||
Education, 2004. ss 8.1.1.1
|
||
------------------------------------------------------
|
||
输入 :
|
||
fun 函数
|
||
a, b 区间范围
|
||
tol 控制误差
|
||
N 最大迭代步数
|
||
输出 :
|
||
sol 解
|
||
err 解出标志:false-未解出或达到边界;
|
||
true-全部解出
|
||
------------------------------------------------------
|
||
*/
|
||
|
||
package goNum_test
|
||
|
||
import (
|
||
"math"
|
||
"testing"
|
||
|
||
"github.com/chfenger/goNum"
|
||
)
|
||
|
||
// OptimizeGS 黄金分割法(Golden Section)求单峰单自变量极小值
|
||
func OptimizeGS(fun func(float64) float64, a, b, tol float64, N int) (float64, bool) {
|
||
/*
|
||
黄金分割法(Golden Section)求单峰单自变量极小值
|
||
输入 :
|
||
fun 函数
|
||
a, b 区间范围
|
||
tol 控制误差
|
||
N 最大迭代步数
|
||
输出 :
|
||
sol 解
|
||
err 解出标志:false-未解出或达到边界;
|
||
true-全部解出
|
||
*/
|
||
//判断a和b的关系
|
||
if math.Abs(fun(a)-fun(b)) < tol {
|
||
if fun(a) < fun(b) {
|
||
return a, true
|
||
} else {
|
||
return b, true
|
||
}
|
||
}
|
||
|
||
var sol float64
|
||
var err bool = false
|
||
r1 := 1.0 - (math.Sqrt(5.0)-1.0)/2.0 //1-r
|
||
|
||
for i := 0; i < N; i++ {
|
||
ba := b - a //b-a
|
||
c := a + r1*ba
|
||
d := b - r1*ba
|
||
//区间压缩
|
||
if fun(c) > fun(d) {
|
||
a = c
|
||
} else { //fun(c)<=fun(d)
|
||
b = d
|
||
}
|
||
//误差判断
|
||
if math.Abs(fun(a)-fun(b)) < tol {
|
||
err = true
|
||
if fun(c) < fun(d) {
|
||
sol = c
|
||
} else {
|
||
sol = d
|
||
}
|
||
return sol, err
|
||
}
|
||
}
|
||
|
||
return sol, err
|
||
}
|
||
|
||
func fun50(x float64) float64 {
|
||
return x*x - math.Sin(x)
|
||
}
|
||
|
||
func BenchmarkOptimizeGS(b *testing.B) {
|
||
for i := 0; i < b.N; i++ {
|
||
goNum.OptimizeGS(fun50, 0.0, 1.0, 1e-10, 1e3)
|
||
}
|
||
}
|