mirror of
https://gitee.com/chfenger/goNum.git
synced 2025-12-06 16:49:24 +08:00
update comments in all of files in convenient to generate package information using `godoc` command or give tips in LiteIDE editor when the cursor keeps resting on a function or method.
153 lines
3.4 KiB
Go
153 lines
3.4 KiB
Go
// OptimizeFibonacci_test
|
||
/*
|
||
------------------------------------------------------
|
||
作者 : Black Ghost
|
||
日期 : 2018-12-24
|
||
版本 : 0.0.0
|
||
------------------------------------------------------
|
||
Fibonacci搜索法求单峰单自变量极小值
|
||
理论:
|
||
对于在区间[a, b]内有定义的凹函数f(x),取点:
|
||
ck = ak+(1-r)(bk-ak)
|
||
d = ak+rk(bk-ak)
|
||
其中r为Fibonacci数列值之比F_(n-k-1)/F_(n-k)
|
||
|
||
迭代次数n应使得Fn > (b0-a0)/tol
|
||
|
||
如果f(c) <= f(d),则将d赋予b,c赋予d,继续迭代;
|
||
如果f(c) > f(d),则将c赋予a,d赋予c,继续迭代。
|
||
迭代终止条件为Abs(f(a)-f(b)) < tol,取区间中值
|
||
|
||
参考:John H. Mathews and Kurtis D. Fink. Numerical
|
||
methods using MATLAB, 4th ed. Pearson
|
||
Education, 2004. ss 8.1.1.2,并改进
|
||
------------------------------------------------------
|
||
输入 :
|
||
fun 函数
|
||
a, b 区间范围
|
||
tol 控制误差
|
||
输出 :
|
||
sol 解
|
||
err 解出标志:false-未解出或达到边界;
|
||
true-全部解出
|
||
------------------------------------------------------
|
||
*/
|
||
|
||
package goNum_test
|
||
|
||
import (
|
||
"math"
|
||
"testing"
|
||
|
||
"github.com/chfenger/goNum"
|
||
)
|
||
|
||
// OptimizeFibonacci Fibonacci搜索法求单峰单自变量极小值
|
||
func OptimizeFibonacci(fun func(float64) float64, a, b, tol float64) (float64, bool) {
|
||
/*
|
||
Fibonacci搜索法求单峰单自变量极小值
|
||
输入 :
|
||
fun 函数
|
||
a, b 区间范围
|
||
tol 控制误差
|
||
输出 :
|
||
sol 解
|
||
err 解出标志:false-未解出或达到边界;
|
||
true-全部解出
|
||
*/
|
||
//判断a和b的关系
|
||
if math.Abs(fun(a)-fun(b)) < tol {
|
||
if fun(a) < fun(b) {
|
||
return a, true
|
||
} else {
|
||
return b, true
|
||
}
|
||
}
|
||
|
||
var sol float64
|
||
var err bool = false
|
||
var n, cdFlag int = 0, 0 //cdFlag---下一步计算c(cdFlag=0)还是d(cdFlag=1)
|
||
|
||
//计算n
|
||
bat := (fun(b) - fun(a)) / tol
|
||
for i := 0; i < 1e6; i++ {
|
||
if float64(goNum.Fibonacci(i)) > bat {
|
||
n = i
|
||
break
|
||
}
|
||
}
|
||
|
||
//计算
|
||
//第一步计算两次,c、d
|
||
fnn := float64(goNum.Fibonacci(n-1)) / float64(goNum.Fibonacci(n))
|
||
ba := b - a
|
||
c := a + (1.0-fnn)*ba
|
||
d := a + fnn*ba
|
||
fc := fun(c)
|
||
fd := fun(d)
|
||
if fc <= fd {
|
||
b = d
|
||
d = c
|
||
fd = fc
|
||
cdFlag = 0
|
||
} else {
|
||
a = c
|
||
c = d
|
||
fc = fd
|
||
cdFlag = 1
|
||
}
|
||
//0 < k < n-3
|
||
for k := 1; k < n-3; k++ {
|
||
fnn = float64(goNum.Fibonacci(n-k-1)) / float64(goNum.Fibonacci(n-k))
|
||
ba = b - a
|
||
if cdFlag == 0 { //计算c
|
||
c = a + (1.0-fnn)*ba
|
||
fc = fun(c)
|
||
} else { //计算d
|
||
d = a + fnn*ba
|
||
fd = fun(d)
|
||
}
|
||
//下一步
|
||
if fc <= fd {
|
||
b = d
|
||
d = c
|
||
fd = fc
|
||
cdFlag = 0
|
||
} else {
|
||
a = c
|
||
c = d
|
||
fc = fd
|
||
cdFlag = 1
|
||
}
|
||
}
|
||
//k=n-3, F2/F3 = 1/2, 不放入循环是为减少if判断的损耗
|
||
fnn = 0.5 - 0.01 //加区别常数0.01
|
||
ba = b - a
|
||
if cdFlag == 0 { //计算c
|
||
c = a + (1.0-fnn)*ba
|
||
fc = fun(c)
|
||
} else { //计算d
|
||
d = a + fnn*ba
|
||
fd = fun(d)
|
||
}
|
||
if fc <= fd {
|
||
b = d
|
||
} else {
|
||
a = c
|
||
}
|
||
sol = (b + a) / 2.0
|
||
|
||
err = true
|
||
return sol, err
|
||
}
|
||
|
||
func fun50f(x float64) float64 {
|
||
return x*x - math.Sin(x)
|
||
}
|
||
|
||
func BenchmarkOptimizeFibonacci(b *testing.B) {
|
||
for i := 0; i < b.N; i++ {
|
||
goNum.OptimizeFibonacci(fun50f, 0.0, 1.0, 1e-10)
|
||
}
|
||
}
|