mirror of
https://gitee.com/chfenger/goNum.git
synced 2025-12-06 16:49:24 +08:00
update comments in all of files in convenient to generate package information using `godoc` command or give tips in LiteIDE editor when the cursor keeps resting on a function or method.
115 lines
3.0 KiB
Go
115 lines
3.0 KiB
Go
// MatrixEigenPower_test
|
||
/*
|
||
------------------------------------------------------
|
||
作者 : Black Ghost
|
||
日期 : 2018-11-23
|
||
版本 : 0.0.0
|
||
------------------------------------------------------
|
||
求解n阶矩阵A的主特征值(按模最大)及其特征向量
|
||
理论:
|
||
参考 李信真, 车刚明, 欧阳洁, 等. 计算方法. 西北工业大学
|
||
出版社, 2000, pp 78-81.
|
||
------------------------------------------------------
|
||
输入 :
|
||
A 系数矩阵
|
||
u n维初始向量
|
||
tol 最大容许误差
|
||
n 最大迭代步数
|
||
输出 :
|
||
sol 主特征值
|
||
v 主特征值所对应的特征向量
|
||
err 解出标志:false-未解出或达到步数上限;
|
||
true-全部解出
|
||
------------------------------------------------------
|
||
*/
|
||
|
||
package goNum_test
|
||
|
||
import (
|
||
"math"
|
||
"testing"
|
||
|
||
"github.com/chfenger/goNum"
|
||
)
|
||
|
||
// MatrixEigenPower 求解n阶矩阵A的主特征值(按模最大)及其特征向量
|
||
func MatrixEigenPower(A, u0 goNum.Matrix, tol float64, n int) (float64, []float64, bool) {
|
||
/*
|
||
求解n阶矩阵A的主特征值(按模最大)及其特征向量
|
||
输入 :
|
||
A 系数矩阵
|
||
u n维初始向量
|
||
tol 最大容许误差
|
||
n 最大迭代步数
|
||
输出 :
|
||
sol 主特征值
|
||
v 主特征值所对应的特征向量
|
||
err 解出标志:false-未解出或达到步数上限;
|
||
true-全部解出
|
||
*/
|
||
//判断输入正确与否
|
||
if A.Rows != u0.Rows {
|
||
panic("goNum.MatrixEigenPower: A and u are not matched")
|
||
}
|
||
|
||
u1 := goNum.ZeroMatrix(u0.Rows, u0.Columns)
|
||
var l0, l1 float64
|
||
v1 := make([]float64, u0.Rows)
|
||
var err bool = false
|
||
var j int
|
||
|
||
u1 = goNum.DotPruduct(A, u0)
|
||
for i0 := 0; i0 < u0.Rows; i0++ {
|
||
if (math.Abs(u0.Data[i0]) > 1e-3) && (math.Abs(u1.Data[i0]) > 1e-3) {
|
||
j = i0
|
||
l0 = u1.Data[i0] / u0.Data[i0]
|
||
}
|
||
u0.Data[i0] = u1.Data[i0]
|
||
}
|
||
|
||
for i := 0; i < n; i++ {
|
||
u1 = goNum.DotPruduct(A, u0)
|
||
l1 = u1.Data[j] / u0.Data[j]
|
||
|
||
//计算最大值,并进行规范化处理
|
||
for i0 := 0; i0 < u0.Rows; i0++ {
|
||
v1[i0] = math.Abs(u1.Data[i0])
|
||
}
|
||
_, j0, _ := goNum.Max(v1)
|
||
max := u1.Data[j0]
|
||
if max > 1e6 {
|
||
for i0 := 0; i0 < u0.Rows; i0++ {
|
||
u1.Data[i0] = u1.Data[i0] / max
|
||
}
|
||
}
|
||
|
||
//判断算出否,并计算对应的特征向量
|
||
if math.Abs(l1-l0) < tol {
|
||
for i0 := 0; i0 < u0.Rows; i0++ {
|
||
u1.Data[i0] = u1.Data[i0] / max
|
||
}
|
||
err = true
|
||
return l1, u1.Data, err
|
||
}
|
||
|
||
//准备下次迭代
|
||
l0 = l1
|
||
for i0 := 0; i0 < u0.Rows; i0++ {
|
||
u0.Data[i0] = u1.Data[i0]
|
||
}
|
||
}
|
||
|
||
return 0.0, make([]float64, u0.Rows), err
|
||
}
|
||
|
||
func BenchmarkMatrixEigenPower(b *testing.B) {
|
||
A19 := goNum.NewMatrix(3, 3, []float64{6.0, -12.0, 6.0,
|
||
-21.0, -3.0, 24.0,
|
||
-12.0, -12.0, 51.0})
|
||
u19 := goNum.NewMatrix(3, 1, []float64{1.0, 1.0, 1.0})
|
||
|
||
for i := 0; i < b.N; i++ {
|
||
MatrixEigenPower(A19, u19, 1e-3, 1e3)
|
||
}
|
||
}
|