mirror of
https://gitee.com/dify_ai/dify.git
synced 2025-12-07 11:55:44 +08:00
Compare commits
1 Commits
feat-enabl
...
test/struc
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e65c84de18 |
@@ -0,0 +1,465 @@
|
||||
from decimal import Decimal
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from core.llm_generator.output_parser.errors import OutputParserError
|
||||
from core.llm_generator.output_parser.structured_output import invoke_llm_with_structured_output
|
||||
from core.model_runtime.entities.llm_entities import (
|
||||
LLMResult,
|
||||
LLMResultChunk,
|
||||
LLMResultChunkDelta,
|
||||
LLMResultChunkWithStructuredOutput,
|
||||
LLMResultWithStructuredOutput,
|
||||
LLMUsage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, ModelType
|
||||
|
||||
|
||||
def create_mock_usage(prompt_tokens: int = 10, completion_tokens: int = 5) -> LLMUsage:
|
||||
"""Create a mock LLMUsage with all required fields"""
|
||||
return LLMUsage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
prompt_unit_price=Decimal("0.001"),
|
||||
prompt_price_unit=Decimal("1"),
|
||||
prompt_price=Decimal(str(prompt_tokens)) * Decimal("0.001"),
|
||||
completion_tokens=completion_tokens,
|
||||
completion_unit_price=Decimal("0.002"),
|
||||
completion_price_unit=Decimal("1"),
|
||||
completion_price=Decimal(str(completion_tokens)) * Decimal("0.002"),
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
total_price=Decimal(str(prompt_tokens)) * Decimal("0.001") + Decimal(str(completion_tokens)) * Decimal("0.002"),
|
||||
currency="USD",
|
||||
latency=1.5,
|
||||
)
|
||||
|
||||
|
||||
def get_model_entity(provider: str, model_name: str, support_structure_output: bool = False) -> AIModelEntity:
|
||||
"""Create a mock AIModelEntity for testing"""
|
||||
model_schema = MagicMock()
|
||||
model_schema.model = model_name
|
||||
model_schema.provider = provider
|
||||
model_schema.model_type = ModelType.LLM
|
||||
model_schema.model_provider = provider
|
||||
model_schema.model_name = model_name
|
||||
model_schema.support_structure_output = support_structure_output
|
||||
model_schema.parameter_rules = []
|
||||
|
||||
return model_schema
|
||||
|
||||
|
||||
def get_model_instance() -> MagicMock:
|
||||
"""Create a mock ModelInstance for testing"""
|
||||
mock_instance = MagicMock()
|
||||
mock_instance.provider = "openai"
|
||||
mock_instance.credentials = {}
|
||||
return mock_instance
|
||||
|
||||
|
||||
def test_structured_output_parser():
|
||||
"""Test cases for invoke_llm_with_structured_output function"""
|
||||
|
||||
testcases = [
|
||||
# Test case 1: Model with native structured output support, non-streaming
|
||||
{
|
||||
"name": "native_structured_output_non_streaming",
|
||||
"provider": "openai",
|
||||
"model_name": "gpt-4o",
|
||||
"support_structure_output": True,
|
||||
"stream": False,
|
||||
"json_schema": {"type": "object", "properties": {"name": {"type": "string"}}},
|
||||
"expected_llm_response": LLMResult(
|
||||
model="gpt-4o",
|
||||
message=AssistantPromptMessage(content='{"name": "test"}'),
|
||||
usage=create_mock_usage(prompt_tokens=10, completion_tokens=5),
|
||||
),
|
||||
"expected_result_type": LLMResultWithStructuredOutput,
|
||||
"should_raise": False,
|
||||
},
|
||||
# Test case 2: Model with native structured output support, streaming
|
||||
{
|
||||
"name": "native_structured_output_streaming",
|
||||
"provider": "openai",
|
||||
"model_name": "gpt-4o",
|
||||
"support_structure_output": True,
|
||||
"stream": True,
|
||||
"json_schema": {"type": "object", "properties": {"name": {"type": "string"}}},
|
||||
"expected_llm_response": [
|
||||
LLMResultChunk(
|
||||
model="gpt-4o",
|
||||
prompt_messages=[UserPromptMessage(content="test")],
|
||||
system_fingerprint="test",
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(content='{"name":'),
|
||||
usage=create_mock_usage(prompt_tokens=10, completion_tokens=2),
|
||||
),
|
||||
),
|
||||
LLMResultChunk(
|
||||
model="gpt-4o",
|
||||
prompt_messages=[UserPromptMessage(content="test")],
|
||||
system_fingerprint="test",
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(content=' "test"}'),
|
||||
usage=create_mock_usage(prompt_tokens=10, completion_tokens=3),
|
||||
),
|
||||
),
|
||||
],
|
||||
"expected_result_type": "generator",
|
||||
"should_raise": False,
|
||||
},
|
||||
# Test case 3: Model without native structured output support, non-streaming
|
||||
{
|
||||
"name": "prompt_based_structured_output_non_streaming",
|
||||
"provider": "anthropic",
|
||||
"model_name": "claude-3-sonnet",
|
||||
"support_structure_output": False,
|
||||
"stream": False,
|
||||
"json_schema": {"type": "object", "properties": {"answer": {"type": "string"}}},
|
||||
"expected_llm_response": LLMResult(
|
||||
model="claude-3-sonnet",
|
||||
message=AssistantPromptMessage(content='{"answer": "test response"}'),
|
||||
usage=create_mock_usage(prompt_tokens=15, completion_tokens=8),
|
||||
),
|
||||
"expected_result_type": LLMResultWithStructuredOutput,
|
||||
"should_raise": False,
|
||||
},
|
||||
# Test case 4: Model without native structured output support, streaming
|
||||
{
|
||||
"name": "prompt_based_structured_output_streaming",
|
||||
"provider": "anthropic",
|
||||
"model_name": "claude-3-sonnet",
|
||||
"support_structure_output": False,
|
||||
"stream": True,
|
||||
"json_schema": {"type": "object", "properties": {"answer": {"type": "string"}}},
|
||||
"expected_llm_response": [
|
||||
LLMResultChunk(
|
||||
model="claude-3-sonnet",
|
||||
prompt_messages=[UserPromptMessage(content="test")],
|
||||
system_fingerprint="test",
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(content='{"answer": "test'),
|
||||
usage=create_mock_usage(prompt_tokens=15, completion_tokens=3),
|
||||
),
|
||||
),
|
||||
LLMResultChunk(
|
||||
model="claude-3-sonnet",
|
||||
prompt_messages=[UserPromptMessage(content="test")],
|
||||
system_fingerprint="test",
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(content=' response"}'),
|
||||
usage=create_mock_usage(prompt_tokens=15, completion_tokens=5),
|
||||
),
|
||||
),
|
||||
],
|
||||
"expected_result_type": "generator",
|
||||
"should_raise": False,
|
||||
},
|
||||
# Test case 5: Streaming with list content
|
||||
{
|
||||
"name": "streaming_with_list_content",
|
||||
"provider": "openai",
|
||||
"model_name": "gpt-4o",
|
||||
"support_structure_output": True,
|
||||
"stream": True,
|
||||
"json_schema": {"type": "object", "properties": {"data": {"type": "string"}}},
|
||||
"expected_llm_response": [
|
||||
LLMResultChunk(
|
||||
model="gpt-4o",
|
||||
prompt_messages=[UserPromptMessage(content="test")],
|
||||
system_fingerprint="test",
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(
|
||||
content=[
|
||||
TextPromptMessageContent(data='{"data":'),
|
||||
]
|
||||
),
|
||||
usage=create_mock_usage(prompt_tokens=10, completion_tokens=2),
|
||||
),
|
||||
),
|
||||
LLMResultChunk(
|
||||
model="gpt-4o",
|
||||
prompt_messages=[UserPromptMessage(content="test")],
|
||||
system_fingerprint="test",
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(
|
||||
content=[
|
||||
TextPromptMessageContent(data=' "value"}'),
|
||||
]
|
||||
),
|
||||
usage=create_mock_usage(prompt_tokens=10, completion_tokens=3),
|
||||
),
|
||||
),
|
||||
],
|
||||
"expected_result_type": "generator",
|
||||
"should_raise": False,
|
||||
},
|
||||
# Test case 6: Error case - non-string LLM response content (non-streaming)
|
||||
{
|
||||
"name": "error_non_string_content_non_streaming",
|
||||
"provider": "openai",
|
||||
"model_name": "gpt-4o",
|
||||
"support_structure_output": True,
|
||||
"stream": False,
|
||||
"json_schema": {"type": "object", "properties": {"name": {"type": "string"}}},
|
||||
"expected_llm_response": LLMResult(
|
||||
model="gpt-4o",
|
||||
message=AssistantPromptMessage(content=None), # Non-string content
|
||||
usage=create_mock_usage(prompt_tokens=10, completion_tokens=5),
|
||||
),
|
||||
"expected_result_type": None,
|
||||
"should_raise": True,
|
||||
"expected_error": OutputParserError,
|
||||
},
|
||||
# Test case 7: JSON repair scenario
|
||||
{
|
||||
"name": "json_repair_scenario",
|
||||
"provider": "openai",
|
||||
"model_name": "gpt-4o",
|
||||
"support_structure_output": True,
|
||||
"stream": False,
|
||||
"json_schema": {"type": "object", "properties": {"name": {"type": "string"}}},
|
||||
"expected_llm_response": LLMResult(
|
||||
model="gpt-4o",
|
||||
message=AssistantPromptMessage(content='{"name": "test"'), # Invalid JSON - missing closing brace
|
||||
usage=create_mock_usage(prompt_tokens=10, completion_tokens=5),
|
||||
),
|
||||
"expected_result_type": LLMResultWithStructuredOutput,
|
||||
"should_raise": False,
|
||||
},
|
||||
# Test case 8: Model with parameter rules for response format
|
||||
{
|
||||
"name": "model_with_parameter_rules",
|
||||
"provider": "openai",
|
||||
"model_name": "gpt-4o",
|
||||
"support_structure_output": True,
|
||||
"stream": False,
|
||||
"json_schema": {"type": "object", "properties": {"result": {"type": "string"}}},
|
||||
"parameter_rules": [
|
||||
MagicMock(name="response_format", options=["json_schema"], required=False),
|
||||
],
|
||||
"expected_llm_response": LLMResult(
|
||||
model="gpt-4o",
|
||||
message=AssistantPromptMessage(content='{"result": "success"}'),
|
||||
usage=create_mock_usage(prompt_tokens=10, completion_tokens=5),
|
||||
),
|
||||
"expected_result_type": LLMResultWithStructuredOutput,
|
||||
"should_raise": False,
|
||||
},
|
||||
# Test case 9: Model without native support but with JSON response format rules
|
||||
{
|
||||
"name": "non_native_with_json_rules",
|
||||
"provider": "anthropic",
|
||||
"model_name": "claude-3-sonnet",
|
||||
"support_structure_output": False,
|
||||
"stream": False,
|
||||
"json_schema": {"type": "object", "properties": {"output": {"type": "string"}}},
|
||||
"parameter_rules": [
|
||||
MagicMock(name="response_format", options=["JSON"], required=False),
|
||||
],
|
||||
"expected_llm_response": LLMResult(
|
||||
model="claude-3-sonnet",
|
||||
message=AssistantPromptMessage(content='{"output": "result"}'),
|
||||
usage=create_mock_usage(prompt_tokens=15, completion_tokens=8),
|
||||
),
|
||||
"expected_result_type": LLMResultWithStructuredOutput,
|
||||
"should_raise": False,
|
||||
},
|
||||
]
|
||||
|
||||
for case in testcases:
|
||||
print(f"Running test case: {case['name']}")
|
||||
|
||||
# Setup model entity
|
||||
model_schema = get_model_entity(case["provider"], case["model_name"], case["support_structure_output"])
|
||||
|
||||
# Add parameter rules if specified
|
||||
if "parameter_rules" in case:
|
||||
model_schema.parameter_rules = case["parameter_rules"]
|
||||
|
||||
# Setup model instance
|
||||
model_instance = get_model_instance()
|
||||
model_instance.invoke_llm.return_value = case["expected_llm_response"]
|
||||
|
||||
# Setup prompt messages
|
||||
prompt_messages = [
|
||||
SystemPromptMessage(content="You are a helpful assistant."),
|
||||
UserPromptMessage(content="Generate a response according to the schema."),
|
||||
]
|
||||
|
||||
if case["should_raise"]:
|
||||
# Test error cases
|
||||
with pytest.raises(case["expected_error"]): # noqa: PT012
|
||||
if case["stream"]:
|
||||
result_generator = invoke_llm_with_structured_output(
|
||||
provider=case["provider"],
|
||||
model_schema=model_schema,
|
||||
model_instance=model_instance,
|
||||
prompt_messages=prompt_messages,
|
||||
json_schema=case["json_schema"],
|
||||
stream=case["stream"],
|
||||
)
|
||||
# Consume the generator to trigger the error
|
||||
list(result_generator)
|
||||
else:
|
||||
invoke_llm_with_structured_output(
|
||||
provider=case["provider"],
|
||||
model_schema=model_schema,
|
||||
model_instance=model_instance,
|
||||
prompt_messages=prompt_messages,
|
||||
json_schema=case["json_schema"],
|
||||
stream=case["stream"],
|
||||
)
|
||||
else:
|
||||
# Test successful cases
|
||||
with patch("core.llm_generator.output_parser.structured_output.json_repair.loads") as mock_json_repair:
|
||||
# Configure json_repair mock for cases that need it
|
||||
if case["name"] == "json_repair_scenario":
|
||||
mock_json_repair.return_value = {"name": "test"}
|
||||
|
||||
result = invoke_llm_with_structured_output(
|
||||
provider=case["provider"],
|
||||
model_schema=model_schema,
|
||||
model_instance=model_instance,
|
||||
prompt_messages=prompt_messages,
|
||||
json_schema=case["json_schema"],
|
||||
stream=case["stream"],
|
||||
model_parameters={"temperature": 0.7, "max_tokens": 100},
|
||||
user="test_user",
|
||||
)
|
||||
|
||||
if case["expected_result_type"] == "generator":
|
||||
# Test streaming results
|
||||
assert hasattr(result, "__iter__")
|
||||
chunks = list(result)
|
||||
assert len(chunks) > 0
|
||||
|
||||
# Verify all chunks are LLMResultChunkWithStructuredOutput
|
||||
for chunk in chunks[:-1]: # All except last
|
||||
assert isinstance(chunk, LLMResultChunkWithStructuredOutput)
|
||||
assert chunk.model == case["model_name"]
|
||||
|
||||
# Last chunk should have structured output
|
||||
last_chunk = chunks[-1]
|
||||
assert isinstance(last_chunk, LLMResultChunkWithStructuredOutput)
|
||||
assert last_chunk.structured_output is not None
|
||||
assert isinstance(last_chunk.structured_output, dict)
|
||||
else:
|
||||
# Test non-streaming results
|
||||
assert isinstance(result, case["expected_result_type"])
|
||||
assert result.model == case["model_name"]
|
||||
assert result.structured_output is not None
|
||||
assert isinstance(result.structured_output, dict)
|
||||
|
||||
# Verify model_instance.invoke_llm was called with correct parameters
|
||||
model_instance.invoke_llm.assert_called_once()
|
||||
call_args = model_instance.invoke_llm.call_args
|
||||
|
||||
assert call_args.kwargs["stream"] == case["stream"]
|
||||
assert call_args.kwargs["user"] == "test_user"
|
||||
assert "temperature" in call_args.kwargs["model_parameters"]
|
||||
assert "max_tokens" in call_args.kwargs["model_parameters"]
|
||||
|
||||
|
||||
def test_parse_structured_output_edge_cases():
|
||||
"""Test edge cases for structured output parsing"""
|
||||
|
||||
# Test case with list that contains dict (reasoning model scenario)
|
||||
testcase_list_with_dict = {
|
||||
"name": "list_with_dict_parsing",
|
||||
"provider": "deepseek",
|
||||
"model_name": "deepseek-r1",
|
||||
"support_structure_output": False,
|
||||
"stream": False,
|
||||
"json_schema": {"type": "object", "properties": {"thought": {"type": "string"}}},
|
||||
"expected_llm_response": LLMResult(
|
||||
model="deepseek-r1",
|
||||
message=AssistantPromptMessage(content='[{"thought": "reasoning process"}, "other content"]'),
|
||||
usage=create_mock_usage(prompt_tokens=10, completion_tokens=5),
|
||||
),
|
||||
"expected_result_type": LLMResultWithStructuredOutput,
|
||||
"should_raise": False,
|
||||
}
|
||||
|
||||
# Setup for list parsing test
|
||||
model_schema = get_model_entity(
|
||||
testcase_list_with_dict["provider"],
|
||||
testcase_list_with_dict["model_name"],
|
||||
testcase_list_with_dict["support_structure_output"],
|
||||
)
|
||||
|
||||
model_instance = get_model_instance()
|
||||
model_instance.invoke_llm.return_value = testcase_list_with_dict["expected_llm_response"]
|
||||
|
||||
prompt_messages = [UserPromptMessage(content="Test reasoning")]
|
||||
|
||||
with patch("core.llm_generator.output_parser.structured_output.json_repair.loads") as mock_json_repair:
|
||||
# Mock json_repair to return a list with dict
|
||||
mock_json_repair.return_value = [{"thought": "reasoning process"}, "other content"]
|
||||
|
||||
result = invoke_llm_with_structured_output(
|
||||
provider=testcase_list_with_dict["provider"],
|
||||
model_schema=model_schema,
|
||||
model_instance=model_instance,
|
||||
prompt_messages=prompt_messages,
|
||||
json_schema=testcase_list_with_dict["json_schema"],
|
||||
stream=testcase_list_with_dict["stream"],
|
||||
)
|
||||
|
||||
assert isinstance(result, LLMResultWithStructuredOutput)
|
||||
assert result.structured_output == {"thought": "reasoning process"}
|
||||
|
||||
|
||||
def test_model_specific_schema_preparation():
|
||||
"""Test schema preparation for different model types"""
|
||||
|
||||
# Test Gemini model
|
||||
gemini_case = {
|
||||
"provider": "google",
|
||||
"model_name": "gemini-pro",
|
||||
"support_structure_output": True,
|
||||
"stream": False,
|
||||
"json_schema": {"type": "object", "properties": {"result": {"type": "boolean"}}, "additionalProperties": False},
|
||||
}
|
||||
|
||||
model_schema = get_model_entity(
|
||||
gemini_case["provider"], gemini_case["model_name"], gemini_case["support_structure_output"]
|
||||
)
|
||||
|
||||
model_instance = get_model_instance()
|
||||
model_instance.invoke_llm.return_value = LLMResult(
|
||||
model="gemini-pro",
|
||||
message=AssistantPromptMessage(content='{"result": "true"}'),
|
||||
usage=create_mock_usage(prompt_tokens=10, completion_tokens=5),
|
||||
)
|
||||
|
||||
prompt_messages = [UserPromptMessage(content="Test")]
|
||||
|
||||
result = invoke_llm_with_structured_output(
|
||||
provider=gemini_case["provider"],
|
||||
model_schema=model_schema,
|
||||
model_instance=model_instance,
|
||||
prompt_messages=prompt_messages,
|
||||
json_schema=gemini_case["json_schema"],
|
||||
stream=gemini_case["stream"],
|
||||
)
|
||||
|
||||
assert isinstance(result, LLMResultWithStructuredOutput)
|
||||
|
||||
# Verify model_instance.invoke_llm was called and check the schema preparation
|
||||
model_instance.invoke_llm.assert_called_once()
|
||||
call_args = model_instance.invoke_llm.call_args
|
||||
|
||||
# For Gemini, the schema should not have additionalProperties and boolean should be converted to string
|
||||
assert "json_schema" in call_args.kwargs["model_parameters"]
|
||||
Reference in New Issue
Block a user